(2009•河南)如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.點(diǎn)O是AC的中點(diǎn),過點(diǎn)O的直線l從與AC重合的位置開始,繞點(diǎn)O作逆時(shí)針旋轉(zhuǎn),交AB邊于點(diǎn)D,過點(diǎn)C作CE∥AB交直線l于點(diǎn)E,設(shè)直線l的旋轉(zhuǎn)角為α.
(1)①當(dāng)α=______度時(shí),四邊形EDBC是等腰梯形,此時(shí)AD的長(zhǎng)為______;
②當(dāng)α=______度時(shí),四邊形EDBC是直角梯形,此時(shí)AD的長(zhǎng)為______;
(2)當(dāng)α=90°時(shí),判斷四邊形EDBC是否為菱形,并說明理由.

【答案】分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)和等腰梯形的性質(zhì),①假設(shè)四邊形EDBC是等腰梯形,根據(jù)題目已知條件及外角和定理可求α,AD;②假設(shè)四邊形EDBC是直角梯形,根據(jù)題目已知條件及內(nèi)角和定理可求α,AD.
(2)根據(jù)∠α=∠ACB=90°先證明四邊形EDBC是平行四邊形.再利用Rt△ABC中,∠ACB=90°,∠B=60°,BC=2求得AB,AC,AO的長(zhǎng)度;在Rt△AOD中,∠A=30°,AD=2,可求BD,比較得BD=BC,可證明四邊形EDBC是菱形.
解答:解:(1)①當(dāng)四邊形EDBC是等腰梯形時(shí),
∵∠EDB=∠B=60°,而∠A=30°,
∴α=∠EDB-∠A=30°,
∴△ADO是等腰三角形,
∴AD=OD,
過點(diǎn)O作OF∥BC,
∵BC⊥AC,
∴OF⊥AC,
∴OF是△ABC的中位線,
∴OF=BC=1,
∵α=∠EDB-∠A=30°,
∴∠ODF=60°=∠DOF=60°,
∴△ODF是等邊三角形,
∴OD=OF=DF=1,
∵∠A=∠α=30°,
∴AD=OD=1;

②當(dāng)四邊形EDBC是直角梯形時(shí),∠ODA=90°,而∠A=30°,
根據(jù)三角形的內(nèi)角和定理,得α=90°-∠A=60°,此時(shí),AD=AC×=1.5.

(2)當(dāng)∠α=90°時(shí),四邊形EDBC是菱形.
∵∠α=∠ACB=90°,
∴BC∥ED,
∵CE∥AB,
∴四邊形EDBC是平行四邊形.
在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,
∴∠A=30°,
∴AB=4,AC=2,
∴AO==
在Rt△AOD中,∠A=30°,OD=AD,
AD==,
∴AD=2,
∴BD=2,
∴BD=BC.
又∵四邊形EDBC是平行四邊形,
∴四邊形EDBC是菱形.
點(diǎn)評(píng):解決此問題,既要弄清等腰梯形、直角梯形及菱形的判定,又要掌握有關(guān)旋轉(zhuǎn)的知識(shí),在直角三角形中,30度角所對(duì)的直角邊等于斜邊的一半,也是解決問題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(23)(解析版) 題型:解答題

(2009•河南)如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點(diǎn).
(1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā).沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向終點(diǎn)D運(yùn)動(dòng).速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒.過點(diǎn)P作PE⊥AB交AC于點(diǎn)E.
①過點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.當(dāng)t為何值時(shí),線段EG最長(zhǎng)?
②連接EQ.在點(diǎn)P、Q運(yùn)動(dòng)的過程中,判斷有幾個(gè)時(shí)刻使得△CEQ是等腰三角形?請(qǐng)直接寫出相應(yīng)的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2009•河南)如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點(diǎn).
(1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā).沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向終點(diǎn)D運(yùn)動(dòng).速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒.過點(diǎn)P作PE⊥AB交AC于點(diǎn)E.
①過點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.當(dāng)t為何值時(shí),線段EG最長(zhǎng)?
②連接EQ.在點(diǎn)P、Q運(yùn)動(dòng)的過程中,判斷有幾個(gè)時(shí)刻使得△CEQ是等腰三角形?請(qǐng)直接寫出相應(yīng)的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省名校中考數(shù)學(xué)模擬試卷(九)(解析版) 題型:解答題

(2009•河南)如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點(diǎn).
(1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā).沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向終點(diǎn)D運(yùn)動(dòng).速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒.過點(diǎn)P作PE⊥AB交AC于點(diǎn)E.
①過點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.當(dāng)t為何值時(shí),線段EG最長(zhǎng)?
②連接EQ.在點(diǎn)P、Q運(yùn)動(dòng)的過程中,判斷有幾個(gè)時(shí)刻使得△CEQ是等腰三角形?請(qǐng)直接寫出相應(yīng)的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷(瓜瀝一中 趙桂清)(解析版) 題型:解答題

(2009•河南)如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點(diǎn).
(1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā).沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向終點(diǎn)D運(yùn)動(dòng).速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒.過點(diǎn)P作PE⊥AB交AC于點(diǎn)E.
①過點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.當(dāng)t為何值時(shí),線段EG最長(zhǎng)?
②連接EQ.在點(diǎn)P、Q運(yùn)動(dòng)的過程中,判斷有幾個(gè)時(shí)刻使得△CEQ是等腰三角形?請(qǐng)直接寫出相應(yīng)的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年河南省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•河南)如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點(diǎn).
(1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā).沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向終點(diǎn)D運(yùn)動(dòng).速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒.過點(diǎn)P作PE⊥AB交AC于點(diǎn)E.
①過點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.當(dāng)t為何值時(shí),線段EG最長(zhǎng)?
②連接EQ.在點(diǎn)P、Q運(yùn)動(dòng)的過程中,判斷有幾個(gè)時(shí)刻使得△CEQ是等腰三角形?請(qǐng)直接寫出相應(yīng)的t值.

查看答案和解析>>

同步練習(xí)冊(cè)答案