精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,菱形的對角線經過原點,與交于點軸于點,點D的坐標為反比例函數的圖象恰好經過兩點.

(1)的值及所在直線的表達式;

(2)求證:.

(3)的值.

【答案】1-2,;(2)見解析;(3

【解析】

1)根據菱形的性質及反比例函數的對稱性可以推出,再根據點D的坐標即可得到點P的坐標,從而得出k的值;根據點P的坐標可以得出直線的表達式,最后根據OPAC的關系即可得出直線的表達式;

2)由己等邊對等角即可推出

3)由已知可求得點B的坐標,根據勾股定理可求得OB的值,最后根據同角的余弦即可得出答案.

解:(1)∵在菱形中,對角線互相垂直且平分,

經過原點,且反比例函數的圖象恰好經過兩點,

由反比例函數圖象的對稱性知:,

.

的坐標為

的坐標為,

,則;

設直線的表達式為,將點代入得,

∴直線的表達式為,

設直線的表達式為,

于點,

將點,代入

:,

直線的表達式為.

2)證明:由條件得,,

,

;

3,

關于原點對稱,

中,,從而.

.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,分別以ABC的邊ACBC為腰向外作等腰直角DAC和等腰直角EBC,連接DE.

1)求證:DACEBC;

2)求ABCDEC的面積比.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是長沙九龍倉國際金融中心,位于長沙市黃興路與解放路交會處的東北角,投資160億元人民幣,總建筑面積達98萬平方米,中心主樓BC452m,是目前湖南省第一高樓,大樓頂部有一發(fā)射塔AB,已知和BC處于同一水平面上有一高樓DE,在樓DE底端D點測得A的仰角為α,tanα,在頂端E點測得A的仰角為45°,AE140m

1)求兩樓之間的距離CD;

2)求發(fā)射塔AB的高度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A、C分別在坐標軸上,點B的坐標為(4,2),直線交AB,BC分別于點M,N,反比例函數的圖象經過點M,N.

(1)求反比例函數的解析式;

(2)若點P在y軸上,且OPM的面積與四邊形BMON的面積相等,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,中,,,,動點從點出發(fā),在邊上以每秒的速度向點勻速運動,同時動點從點出發(fā),在邊上以每秒的速度向點勻速運動,運動時間為秒(),連接.

1)若相似,求的值;

2)連接,,若,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個口袋中放有紅、藍、黃三種顏色的小球若干個,這些小球除顏色不同外其余均相同.小明進行了大量的摸球實驗:隨機摸出一球,記下顏色放回去,攪拌均勻再摸出一球,記下顏色再放回去……實驗結束后,小明根據記錄繪制了如圖所示的尚不完整的頻數直方圖,并統(tǒng)計出:摸出黃球的次數是,摸出紅球的次數比摸出藍球次數的倍少,摸出黃球的頻率為.

1)小明共摸了多少次球?

2)補全直方圖;

3)若口袋中共有個小球,請用小明的實驗結論估計其中有紅球多少個.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某籃球隊對隊員進行定點投籃測試,每人每天投籃10次,現對甲、乙兩名隊員在五天中進球數(單位:個)進行統(tǒng)計,結果如下:

10

6

10

6

8

7

9

7

8

9

經過計算,甲進球的平均數為8,方差為3.2.

1)求乙進球的平均數和方差;

2)如果綜合考慮平均成績和成績穩(wěn)定性兩方面的因素,從甲、乙兩名隊員中選出一人去參加定點投籃比賽,應選誰?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:在ABC中,AB5cm,BC7cmSABC14cm2,點P從點B出發(fā),以3cms的速度沿邊BC向終點C運動,過點PPQBC交折線BAC于點Q,DPQ中點,以DQ為邊向右側作正方形DEFQ.設正方形DEFQABC重疊部分圖形的面積是ycm2),點P的運動時間為xs).

1)∠C的度數為   ;

2)當點P不與點C重合,且點F落在邊AC上時x的值為   

3)當點P不與點B,C重合時,求y關于x的函數解析式;

4)當直線BD平分ABC的面積時,直接寫出x的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,線段AB8,射線BGABP為射線BG上一點,以AP為邊作正方形APCD,且點C、D與點BAP兩側,在線段DP上取一點E,使∠EAP=∠BAP,直線CE與線段AB相交于點F(點F與點AB不重合).

1)求證:AEP≌△CEP;

2)判斷CFAB的位置關系,并說明理由;

3)求AEF的周長.

查看答案和解析>>

同步練習冊答案