(2012•樂山)如圖,∠ACD是△ABC的外角,∠ABC的平分線與∠ACD的平分線交于點(diǎn)A1,∠A1BC的平分線與∠A1CD的平分線交于點(diǎn)A2,…,∠An-1BC的平分線與∠An-1CD的平分線交于點(diǎn)An.設(shè)∠A=θ.則:
(1)∠A1=
θ
2
θ
2
;
(2)∠An=
θ
2n
θ
2n
分析:(1)根據(jù)角平分線的定義可得∠A1BC=
1
2
∠ABC,∠A1CD=
1
2
∠ACD,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;
(2)與(1)同理求出∠A2,可以發(fā)現(xiàn)后一個(gè)角等于前一個(gè)角的
1
2
,根據(jù)此規(guī)律即可得解.
解答:解:(1)∵A1B是∠ABC的平分線,A1C是∠ACD的平分線,
∴∠A1BC=
1
2
∠ABC,∠A1CD=
1
2
∠ACD,
又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,
1
2
(∠A+∠ABC)=
1
2
∠ABC+∠A1
∴∠A1=
1
2
∠A,
∵∠A=θ,
∴∠A1=
θ
2
;

(2)同理可得∠A2=
1
2
∠A1=
1
2
1
2
θ=
θ
22

所以∠An=
θ
2n

故答案為:(1)
θ
2
,(2)
θ
2n
點(diǎn)評:本題主要考查了三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),角平分線的定義,熟記性質(zhì)然后推出后一個(gè)角是前一個(gè)角的一半是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樂山)如圖,A、B兩點(diǎn)在數(shù)軸上表示的數(shù)分別為a、b,下列式子成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樂山)如圖,在△ABC中,∠C=90°,AC=BC=4,D是AB的中點(diǎn),點(diǎn)E、F分別在AC、BC邊上運(yùn)動(點(diǎn)E不與點(diǎn)A、C重合),且保持AE=CF,連接DE、DF、EF.在此運(yùn)動變化的過程中,有下列結(jié)論:
①△DFE是等腰直角三角形;
②四邊形CEDF不可能為正方形;
③四邊形CEDF的面積隨點(diǎn)E位置的改變而發(fā)生變化;
④點(diǎn)C到線段EF的最大距離為
2

其中正確結(jié)論的個(gè)數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樂山)如圖,⊙O是四邊形ABCD的內(nèi)切圓,E、F、G、H是切點(diǎn),點(diǎn)P是優(yōu)弧
EFH
上異于E、H的點(diǎn).若∠A=50°,則∠EPH=
65°
65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樂山)如圖,在10×10的正方形網(wǎng)格中,每個(gè)小正方形的邊長都為1,網(wǎng)格中有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)在圖中作出△ABC關(guān)于直線l對稱的△A1B1C1;(要求:A與A1,B與B1,C與C1相對應(yīng))
(2)在(1)問的結(jié)果下,連接BB1,CC1,求四邊形BB1C1C的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樂山)如圖,在東西方向的海岸線l上有一長為1千米的碼頭MN,在碼頭西端M的正西方向30 千米處有一觀察站O.某時(shí)刻測得一艘勻速直線航行的輪船位于O的北偏西30°方向,且與O相距20
3
千米的A處;經(jīng)過40分鐘,又測得該輪船位于O的正北方向,且與O相距20千米的B處.
(1)求該輪船航行的速度;
(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請說明理由.(參考數(shù)據(jù):
2
≈1.414
,
3
≈1.732

查看答案和解析>>

同步練習(xí)冊答案