【題目】根據題意解答
(1)解不等式組
(2)如圖,在正方形ABCD中,點F為CD上一點,BF與AC交于點E,若∠CBF=20°,求∠ADE的度數.
【答案】
(1)解: ,
由①得,x≥1,
由②得,x<4,
所以,不等式組的解集是1≤x<4
(2)解:∵正方形ABCD,
∴AB=AD,∠BAE=∠DAE,
在△ABE與△ADE中,
,
∴△ABE≌△ADE(SAS),
∴∠ABE=∠ADE,
∵∠CBF=20°,
∴∠ABE=70°,
∴∠ADE=70°
【解析】(1)首先解每個不等式,兩個不等式的解集的公共部分就是不等式組的解集(2)根據正方形的性質得出∠BAE=∠DAE,再利用SAS證明△ABE與△ADE全等,再利用三角形的內角和解答即可.
【考點精析】利用一元一次不等式組的解法和正方形的性質對題目進行判斷即可得到答案,需要熟知解法:①分別求出這個不等式組中各個不等式的解集;②利用數軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 );正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為12,BM=CN=5,CM,DN交于點O.則下列結論:
①DN⊥MC;②DN垂直平分MC;③sin∠OCD= ;④S△ODC=S四邊形BMON中,
正確的有(填寫序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以O為圓心的弧 度數為60°,∠BOE=45°,DA⊥OB,EB⊥OB.
(1)求 的值;
(2)若OE與 交于點M,OC平分∠BOE,連接CM.說明CM為⊙O的切線;
(3)在(2)的條件下,若BC=1,求tan∠BCO的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點B、C分別在直線y=2x和y=kx上,點A、D是x軸上的兩點,且四邊形ABCD是正方形.
(1)若正方形ABCD的邊長為2,則點B、C的坐標分別為 .
(2)若正方形ABCD的邊長為a,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點A、B、C、D、均在小正方形的頂點上,請用無刻度直尺作出以下圖形:
①在方格紙中畫以AB為一邊的菱形ABEF,點E、F在小正方形的頂點上,且菱形ABEF的面積為3;
②在方格紙中畫以CD為一邊的等腰△CDG,點G在小正方形的頂點上,連接EG,使∠BEG=90°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】煙臺享有“蘋果之鄉(xiāng)”的美譽.甲、乙兩超市分別用3000元以相同的進價購進質量相同的蘋果.甲超市銷售方案是:將蘋果按大小分類包裝銷售,其中大蘋果400千克,以進價的2倍價格銷售,剩下的小蘋果以高于進價10%銷售.乙超市的銷售方案是:不將蘋果按大小分類,直接包裝銷售,價格按甲超市大、小兩種蘋果售價的平均數定價.若兩超市將蘋果全部售完,其中甲超市獲利2100元(其它成本不計).問:
(1)蘋果進價為每千克多少元?
(2)乙超市獲利多少元?并比較哪種銷售方式更合算.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一個安裝有進出水管的30升容器,水管單位時間內進出的水量是一定的,設從
某時刻開始的4分鐘內只進水不出水,在隨后的8分鐘內既進水又出水,得到水量y(升)
與時間x(分)之間的函數關系如圖所示.根據圖象信息給出下列說法:
①每分鐘進水5升;②當4≤x≤12時,容器中水量在減少;
③若12分鐘后只放水,不進水,還要8分鐘可以把水放完;
④若從一開始進出水管同時打開需要24分鐘可以將容器灌滿.
以上說法中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)設拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由;
(3)如圖②,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com