【題目】如圖1是一個用鐵絲圍成的籃框,我們來仿制一個類似的柱體形籃框.如圖2,它是由一個半徑為r、圓心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干個缺一邊的矩形狀框A1C1D1B1、A2C2D2B2、…、AnBnCnDn,OEFG圍成,其中A1、G、B1上,A2、A3…、An與B2、B3、…Bn分別在半徑OA2和OB2上,C2、C3、…、Cn和D2、D3…Dn分別在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,F(xiàn)H1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距離平行排放(最后一個矩形狀框的邊CnDn與點E間的距離應(yīng)不超過d),A1C1∥A2C2∥A3C3∥…∥AnCn

(1)求d的值;

(2)問:CnDn與點E間的距離能否等于d?如果能,求出這樣的n的值,如果不能,那么它們之間的距離是多少?

【答案】(1);(2)不能,

【解析】

試題分析:(1)根據(jù)d=FH2,求出EH2即可解決問題.

(2)假設(shè)CnDn與點E間的距離能等于d,列出關(guān)于n的方程求解,發(fā)現(xiàn)n沒有整數(shù)解,由=≈4.8,求出n即可解決問題.

試題解析:(1)在RT△D2EC2中,∵∠D2EC2=90°,EC2=ED2=r,EF⊥C2D2,∴EH1=r,F(xiàn)H1=r﹣r,∴d==

(2)假設(shè)CnDn與點E間的距離能等于d,由題意,這個方程n沒有整數(shù)解,所以假設(shè)不成立.

=≈4.8,∴n=6,此時CnDn與點E間的距離==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若│a│=5,│b│=3且a>b,則a-b=(

A. 2或8 B. -2或-8 C. -5或-3 D. ±3或±8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程是3x﹣7=11+x的解是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在愛護地球,綠化祖國的創(chuàng)建活動中,組織了100名學(xué)生開展植樹造林活動,其植樹情況整理如下表:

植樹棵樹(單位:棵)

4

5

6

8

10

人數(shù)(人)

30

22

25

15

8

則這100名學(xué)生所植樹棵樹的中位數(shù)為( 。

A. 4B. 5C. 5.5D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拖拉機開始工作時,油箱中有油30L,每小時耗油5L

1)寫出油箱中的剩余測量QL)與工作時間th)之間的函數(shù)表達(dá)式,并求出自變量t的取值范圍;

2)當(dāng)拖拉機工作4h時,油箱內(nèi)還剩余油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算結(jié)果正確的是(  )

A. 4+5ab=9ab B. 6xy﹣y=6x

C. 6x3+4x7=10x10 D. 8a2b﹣8ba2=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一副創(chuàng)意卡通圓規(guī),圖2是其平面示意圖,OA是支撐臂,OB是旋轉(zhuǎn)臂,使用時,以點A為支撐點,鉛筆芯端點B可繞點A旋轉(zhuǎn)作出圓.已知OA=OB=10cm

(1)當(dāng)∠AOB=18°時,求所作圓的半徑;(結(jié)果精確到0.01cm)

(2)保持∠AOB=18°不變,在旋轉(zhuǎn)臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,求鉛筆芯折斷部分的長度.(結(jié)果精確到0.01cm)

(參考數(shù)據(jù):sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科學(xué)計算器)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們學(xué)過的全等變換方式有、、,生活中常用這三種圖形變換進行圖案設(shè)計.在圖形的上述變換過程中,其不變,只是發(fā)生了改變.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016四川省巴中市)如圖,方格中,每個小正方形的邊長都是單位1,△ABC在平面直角坐標(biāo)系中的位置如圖

(1)畫出將△ABC向右平移2個單位得到△A1B1C1;

(2)畫出將△ABC繞點O順時針方向旋轉(zhuǎn)90°得到的△A2B2C2;

(3)求△A1B1C1與△A2B2C2重合部分的面積

查看答案和解析>>

同步練習(xí)冊答案