如圖,直線AC∥BD,連接AB,直線AC,BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點(diǎn)不屬于任何部分.當(dāng)動點(diǎn)P落在某個部分時,連接PA,PB,構(gòu)成∠PAC,∠APB,∠PBD三個角.(提示:有公共端點(diǎn)的兩條重合的射線所組成的角是0°角)
(1)當(dāng)動點(diǎn)P落在第①部分時,求證:∠APB=∠PAC+∠PBD;
(2)當(dāng)動點(diǎn)P落在第②部分時,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)當(dāng)動點(diǎn)P落在第③部分時,全面探究∠PAC,∠APB,∠PBD之間的關(guān)系,并寫出動點(diǎn)P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以證明.

【答案】分析:(1)如圖1,延長BP交直線AC于點(diǎn)E,由AC∥BD,可知∠PEA=∠PBD.由∠APB=∠PAE+∠PEA,可知∠APB=∠PAC+∠PBD;
(2)過點(diǎn)P作AC的平行線,根據(jù)平行線的性質(zhì)解答;
(3)根據(jù)P的不同位置,分三種情況討論.
解答:解:(1)解法一:如圖1延長BP交直線AC于點(diǎn)E.
∵AC∥BD,∴∠PEA=∠PBD.
∵∠APB=∠PAE+∠PEA,
∴∠APB=∠PAC+∠PBD;

解法二:如圖2
過點(diǎn)P作FP∥AC,
∴∠PAC=∠APF.
∵AC∥BD,∴FP∥BD.
∴∠FPB=∠PBD.
∴∠APB=∠APF+∠FPB
=∠PAC+∠PBD;

解法三:如圖3,
∵AC∥BD,
∴∠CAB+∠ABD=180°,
∠PAC+∠PAB+∠PBA+∠PBD=180°.
又∠APB+∠PBA+∠PAB=180°,
∴∠APB=∠PAC+∠PBD.

(2)不成立.

(3)(a)
當(dāng)動點(diǎn)P在射線BA的右側(cè)時,結(jié)論是
∠PBD=∠PAC+∠APB.
(b)當(dāng)動點(diǎn)P在射線BA上,
結(jié)論是∠PBD=∠PAC+∠APB.
或∠PAC=∠PBD+∠APB或∠APB=0°,
∠PAC=∠PBD(任寫一個即可).
(c)當(dāng)動點(diǎn)P在射線BA的左側(cè)時,
結(jié)論是∠PAC=∠APB+∠PBD.
選擇(a)證明:
如圖4,連接PA,連接PB交AC于M.
∵AC∥BD,
∴∠PMC=∠PBD.
又∵∠PMC=∠PAM+∠APM(三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和),
∴∠PBD=∠PAC+∠APB.
選擇(b)證明:如圖5
∵點(diǎn)P在射線BA上,∴∠APB=0度.
∵AC∥BD,∴∠PBD=∠PAC.
∴∠PBD=∠PAC+∠APB
或∠PAC=∠PBD+∠APB
或∠APB=0°,∠PAC=∠PBD.
選擇(c)證明:
如圖6,連接PA,連接PB交AC于F
∵AC∥BD,∴∠PFA=∠PBD.
∵∠PAC=∠APF+∠PFA,
∴∠PAC=∠APB+∠PBD.
點(diǎn)評:此題考查了角平分線的性質(zhì);是一道探索性問題,旨在考查同學(xué)們對材料的分析研究能力和對平行線及角平分線性質(zhì)的掌握情況.認(rèn)真做好(1)(2)小題,可以為(3)小題提供思路.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、利用平行線的性質(zhì)探究:
如圖,直線AC∥BD,連接AB,直線AC,BD及線段AB把平面分成①②③④四個部分,規(guī)定線上各點(diǎn)不屬于任何部分.當(dāng)動點(diǎn)P落在某個部分時,連接PA、PB,構(gòu)成∠PAC、∠APB、∠PBD三個角.當(dāng)動點(diǎn)P落在第①部分時,小明同學(xué)在研究∠PAC、∠APB、∠PBD三個角的數(shù)量關(guān)系時,利用圖<1>,過點(diǎn)P作PQ∥BD,得出結(jié)論:∠APB=∠PAC+∠PBD.請你參考小明的方法解決下列問題:
(1)當(dāng)動點(diǎn)P落在第②部分時,在圖<2>中畫出圖形,寫出∠PAC、∠APB、∠PBD三個角的數(shù)量關(guān)系;
(2)當(dāng)動點(diǎn)P落在第③部分時,在圖<3>、圖<4>中畫出圖形,探究∠PAC、∠APB、∠PBD之間的數(shù)量關(guān)系,寫出結(jié)論并選擇其中一種情形加以證明.

(1)當(dāng)動點(diǎn)P落在第②部分時
∠APB=∠PAC+∠PBD

(2)當(dāng)動點(diǎn)P落在第③部分時(如圖<3>)
∠PBD=∠APB+∠PAC

當(dāng)動點(diǎn)P落在第③部分時(如圖<4>)
∠PAC=∠PBD+∠APB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,直線AC∥BD,連接AB,直線AC,BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點(diǎn)不屬于任何部分.當(dāng)動點(diǎn)P落在某個部分時,連接PA,PB,構(gòu)成∠PAC,∠APB,∠PBD三個角.(提示:有公共端點(diǎn)的兩條重合的射線所組成的角是0°角)
(1)當(dāng)動點(diǎn)P落在第①部分時,求證:∠APB=∠PAC+∠PBD;
(2)當(dāng)動點(diǎn)P落在第②部分時,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)當(dāng)動點(diǎn)P在第③部分時,全面探究∠PAC,∠APB,∠PBD之間的關(guān)系,并寫出動點(diǎn)P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•桂平市三模)如圖,直線AC∥BD,⊙O與AC和BD分別相切于點(diǎn)A和點(diǎn)B.點(diǎn)M和點(diǎn)N分別是AC和BD上的動點(diǎn),MN沿AC和BD平移.⊙O的半徑為1,∠1=60°.下列結(jié)論錯誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AC∥BD,連接AB,直線AC、BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點(diǎn)不屬于任何部分.當(dāng)動點(diǎn)P落在某個部分時,連接PA、PB,構(gòu)成∠PAC、∠APB、∠PBD三個角. (提示:有公共端點(diǎn)的兩條重合的射線所組成的角是0°)
(1)當(dāng)動點(diǎn)P落在第①部分時,有∠APB=∠PAC+∠PBD,請說明理由;
(2)當(dāng)動點(diǎn)P落在第②部分時,∠APB=∠PAC+∠PBD是否成立?若不成立,試寫出∠PAC、∠APB、∠PBD三個角的等量關(guān)系(無需說明理由);
(3)當(dāng)動點(diǎn)P在第③部分時,探究∠PAC、∠APB、∠PBD之間的關(guān)系,寫出你發(fā)現(xiàn)的一個結(jié)論并加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AC∥BD,連接AB,直線AC,BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點(diǎn)不屬于任何部分.當(dāng)動點(diǎn)P落在某個部分時,連接PA,PB,構(gòu)成∠PAC,∠APB,∠PBD三個角.(提示:有公共端點(diǎn)的兩條重合的射線所組成的角是0°角)
(1)當(dāng)動點(diǎn)P落在第①部分時,試說明∠APB=∠PAC+∠PBD;
(2)當(dāng)動點(diǎn)P落在第②部分時,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)當(dāng)動點(diǎn)P在第③部分時,全面探究∠PAC,∠APB,∠PBD之間的關(guān)系,并寫出動點(diǎn)P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以說明.

查看答案和解析>>

同步練習(xí)冊答案