定義:如果一元二次方程ax2+bx+c=0(a≠0)滿足a-b+c=0,那么我們稱這個方程為“鳳凰方程”.已知2x2-mx-n=0是關于x的鳳凰方程,m是方程的一個根,則m的值為
2或-1
2或-1
分析:根據(jù)“鳳凰方程”的定義知x=-1是一元二次方程ax2+bx+c=0(a≠0)的根,所以由一元二次方程的解的定義、根與系數(shù)的關系可求得m的值.
解答:解:根據(jù)“鳳凰方程”的定義知x=-1是一元二次方程2x2-mx-n=0的根;
①當m=-1時,2x2-mx-n=0是關于x的鳳凰方程;
②當m≠-1時,
∵m是方程2x2-mx-n=0的一個根,
∴-1+m=
m
2

解得m=2.
綜上所述,m的值是2或-1.
故答案是:2或-1.
點評:本題考查了一元二次方程的解的定義.解答該題的關鍵是根據(jù)“鳳凰方程”的定義推知x=-1是一元二次方程ax2+bx+c=0(a≠0)的一個解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

5、定義:如果一元二次方程ax2+bx+c=0(a≠0)滿足a+b+c=0,那么我們稱這個方程為“鳳凰”方程.已知ax2+bx+c=0(a≠0)是“鳳凰”方程,且有兩個相等的實數(shù)根,則下列結論正確的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

定義:如果一元二次方程ax2+bx+c=0有兩個不等的實數(shù)根x1,x2,那么函數(shù)y=ax2+bx+c與X  軸有兩個交點為(x1,0)(x2,0 );如果一元二次方程ax2+bx+c=0有兩個相等的實數(shù)根x1=x2,那么函數(shù)y=ax2+bx+c與x軸有一個交點為(x1,0)或(x2,0 ); 如果一元二次方程ax2+bx+c=0沒有實數(shù)根,那么函數(shù)y=ax2+bx+c與X軸沒有交點;
請問:函數(shù)y=2x2+3x+1與X軸有沒有交點?有,是幾個?且坐標是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

定義:如果一元二次方程滿足,那么我們稱這個方程為“鳳凰方程”.已知是關于的鳳凰方程,是方程的一個根,

的值為        

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

定義:如果一元二次方程滿足,那么我們稱這個方程為“鳳凰”方程.已知是“鳳凰”方程,且有兩個相等的實數(shù)根,則下列結論正確的是(   )

A.          B.           C.         D.

查看答案和解析>>

同步練習冊答案