【題目】如圖,菱形ABCD和菱形ECGF的邊長分別為4和6,∠A=120°,則陰影部分的面積是 .
【答案】4
【解析】解:如圖,設(shè)BF交CE于點(diǎn)H, ∵菱形ECGF的邊CE∥GF,
∴△BCH∽△BGF,
∴ = ,
即 = ,
解得CH= ,
所以,DH=CD﹣CH=4﹣ = ,
∵∠A=120°,
∴∠ECG=∠ABC=180°﹣120°=60°,
∴點(diǎn)B到CD的距離為4× =2 ,
點(diǎn)G到CE的距離為6× =3 ,
∴陰影部分的面積=S△BDH+S△FDH ,
= × ×2 + × ×3 ,
=4 .
所以答案是:4 .
【考點(diǎn)精析】關(guān)于本題考查的菱形的性質(zhì),需要了解菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB和CD的公共部分BD= AB= CD,線段AB、CD的中點(diǎn)E,F(xiàn)之間距離是10cm,求AB,CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畢達(dá)哥拉斯學(xué)派對”數(shù)”與”形”的巧妙結(jié)合作了如下研究:
名稱及圖形 | 三角形數(shù) | 正方形數(shù) | 五邊形數(shù) | 六邊形數(shù) |
第一層幾何點(diǎn)數(shù) | 1 | 1 | 1 | 1 |
第二層幾何點(diǎn)數(shù) | 2 | 3 | 4 | 5 |
第三層幾何點(diǎn)數(shù) | 3 | 5 | 7 | 9 |
… | … | … | … | … |
第六層幾何點(diǎn)數(shù) | ||||
… | … | … | … | … |
第n層幾何點(diǎn)數(shù) |
請寫出第六層各個圖形的幾何點(diǎn)數(shù),并歸納出第n層各個圖形的幾何點(diǎn)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3.0)、C(0,4),點(diǎn)B在拋物線上,CB∥x軸,且AB平分∠CAO.
(1)求拋物線的解析式a,b,c;
(2)線段AB上有一動點(diǎn)P,過點(diǎn)P作y軸的平行線,交拋物線于點(diǎn)Q,求線段PQ的最大值;
(3)拋物線的對稱軸上是否存在點(diǎn)M,使△ABM是以AB為直角邊的直角三角形?如果存在求出點(diǎn)M坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列 個命題:其中真命題是( ).
⑴三角形的外角和是 ;⑵三角形的三個內(nèi)角中至少有兩個銳角;⑶直角三角形兩銳角互余;⑷相等的角是對頂角.
A.( )( )
B.( )( )
C.( )( )
D.( )( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級教材在圖形與幾何部分給出了五條基本事實(shí),在《證明》一章中我們從兩條基本事實(shí)出發(fā),把前面得到的平行線相關(guān)性質(zhì)進(jìn)行了嚴(yán)格的證明,體會了數(shù)學(xué)的公里化思想.請完成下列證明活動:
(1)活動 .利用基本事實(shí)證明:“兩直線平行,同位角相等”.(在括號內(nèi)填上相應(yīng)的基本事實(shí))
已知:如圖,直線 、 被直線 所截, .
求證: .
證明:假設(shè) ,則可以過點(diǎn) 作 .
∵ ,
∴ ().
∴過 點(diǎn)存在兩條直線 、 兩條直線與 平行,這與基本事實(shí)()矛盾.
∴假設(shè)不成立.
∴ .
(2)活動 .利用剛剛證明的“兩直線平行,同位角相等”證明“兩直線平行,同旁內(nèi)角互補(bǔ)”.(要求畫圖,寫出已知、求證并寫出證明過程)
已知:.
求證:.
證明: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C(0,-3),對稱軸是直線x=1,直線BC與拋物線的對稱軸交于點(diǎn)D.
(1)求拋物線的函數(shù)表達(dá)式;
(2)求直線BC的函數(shù)表達(dá)式;
(3)點(diǎn)E為y軸上一動點(diǎn),CE的垂直平分線交CE于點(diǎn)F,交拋物線于P、Q兩點(diǎn),且點(diǎn)P在第三象限.
①當(dāng)線段PQ 時,求tan∠CED的值;
②當(dāng)以C、D、E為頂點(diǎn)的三角形是直角三角形時,請直接寫出點(diǎn)P的坐標(biāo).
(參考公式:拋物線的頂點(diǎn)坐標(biāo)是)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中真命題的個數(shù)是( 。
①用四舍五入法對0.05049取近似值為0.050(精確到0.001);
②若代數(shù)式有意義,則x的取值范圍是x≤-且x≠-2;
③點(diǎn)P(2,-3)關(guān)于x軸的對稱點(diǎn)為P,(-2,- 3);
④月球距離地球表面約為384000000米,這個距離用科學(xué)記數(shù)法表示為3.84×108米.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com