如圖,△ABC為等邊三角形,點M,N分別在BC,AC上,且BM=CN,AM與BN交于Q點.求∠AQN的度數(shù).
分析:∠AQN即∠ABN與∠BAM之和,求解△ABM≌△BCN,∠BAM=∠CBN,進(jìn)而可求解.
解答:解:在△ABM與△BCN中,
AB=BC
∠ABC=∠C=60°
BM=CN
,
∴△ABM≌△BCN(SAS),
∴∠BAM=∠NBC,
∴∠AQN=∠BAM+∠ABQ,
=∠NBC+∠ABQ,
=∠ABM=60°
∴∠AQN=60°.
點評:本題考查了全等三角形的證明和全等三角形對應(yīng)角相等的性質(zhì),考查了等邊三角形各內(nèi)角為60°的性質(zhì),本題中求證∠AQN=∠ABM是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,△ABC為等邊三角形,P為三角形內(nèi)一點,將△ABP繞A點逆時針旋轉(zhuǎn)60°后與△ACP′重合,若AP=3,則PP′=
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC為等邊三角形,D、F分別為BC、AB上的點,且CD=BF,以AD為邊作等邊△ADE.
(1)求證:△ACD≌△CBF;
(2)點D在線段BC上何處時,四邊形CDEF是平行四邊形且∠DEF=30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC為等邊三角形,AE=CD,AD、BE相交于點P,BQ⊥AD與Q,PQ=4,PE=1
(1)求證∠BPQ=60°
(2)求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC為等邊三角形,D、F分別為CB、BA上的點,且CD=BF,以AD為一邊作等邊三角形ADE.
①△ACD與△CBF是全等三角形嗎?說說你的理由.
②ED=FC嗎?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC為等邊△,EC=ED,∠CED=120゜,P為BD的中點,求證:AE=2PE.

查看答案和解析>>

同步練習(xí)冊答案