如圖,∠AOB=90°,將三角尺的直角頂點(diǎn)P,置于∠AOB的平分線OC上,讓三角尺繞點(diǎn)P旋轉(zhuǎn),設(shè)三角尺的兩直角邊與∠AOB的兩邊分別交于E、F,請(qǐng)寫出一個(gè)利用上述所有條件推出的一個(gè)正確結(jié)論(不再標(biāo)注其它字母)   
【答案】分析:如果過(guò)點(diǎn)P作PM⊥OA于M,PN⊥OB于N.首先利用角平分線的性質(zhì)得出PM=PN,然后由ASA證出△PME≌△PNF,從而得出PE=PF.
解答:解:過(guò)點(diǎn)P作PM⊥OA于M,PN⊥OB于N.
又∵P為∠AOB的平分線OC上的任意一點(diǎn),
∴PM=PN.
在△PME與△PNF中,∠EMP=∠FNP=90°,PM=PN,∠EPM=∠FPN=90°-∠EPN,
∴△PME≌△PNF,
∴PE=PF.
故答案為:PE=PF.
點(diǎn)評(píng):此題主要考查了角平分線的性質(zhì),全等三角形的判定,熟練利用角平分線的性質(zhì)是解決問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、如圖,∠AOB=90°,將三角尺的直角頂點(diǎn)落在∠AOB的平分線OC的任意一點(diǎn)P上,使三角尺的兩條直角邊與∠AOB的兩邊分別相交于點(diǎn)E、F.
(1)證明:PE=PF;
(2)若OP=10,試探索四邊形PEOF的面積為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,∠AOB=90°,點(diǎn)C、D分別在OA、OB上.
(1)尺規(guī)作圖(不寫作法,保留作圖痕跡):作∠AOB的平分線OP;作過(guò)C、O、D三點(diǎn)的⊙E,與OP相交于F;連接CF、DF.
(2)在所畫圖中,△CDF是什么形狀?并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•泉州)如圖,∠AOB=90°,∠BOC=30°,則∠AOC=
60
60
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

畫圖、證明:如圖,∠AOB=90°,點(diǎn)C、D分別在OA、OB上.
(1)尺規(guī)作圖(不寫作法,保留作圖痕跡):作∠AOB的平分線OP;作線段CD的垂直平分線EF,分別與CD、OP相交于E、F;連接CF、DF.
(2)在所畫圖中,求證:△CDF為等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,∠AOB=90°,∠AOC為銳角,且ON平分∠AOC,射線OM在∠BON內(nèi)部.
(1)請(qǐng)你數(shù)一數(shù),圖中共有多少個(gè)小于平角的角.
(2)如果∠AOC=50°,∠MON=45°.
①求∠AOM的度數(shù);
②請(qǐng)通過(guò)計(jì)算說(shuō)明OM是否平分∠BOC.
(3)如果∠AOC=x°,∠MON=45°,OM是否平分∠BOC?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案