【題目】如圖,∠B、∠C的平分線相交于F,過點F作DE∥BC,交AB于D,交AC于E,那么下列結論:①△BDF、△CEF都是等腰三角形; ②DE=BD+CE;③△ADE的周長為AB+AC;④BD=CE.其中正確的是( )
A.③④
B.①②
C.①②③
D.②③④
【答案】C
【解析】解:∵DE∥BC, ∴∠DFB=∠FBC,∠EFC=∠FCB,
∵△ABC中,∠ABC與∠ACB的平分線交于點F,
∴∠DBF=∠FBC,∠ECF=∠FCB,
∴∠DBF=∠DFB,∠ECF=∠EFC,
∴DB=DF,EF=EC,
即△BDF和△CEF都是等腰三角形;
故①正確;
∴DE=DF+EF=BD+CE,
故②正確;
∴△ADE的周長為:AD+DE+AE=AB+BD+CE+AE=AB+AC;
故③正確;
∵∠ABC不一定等于∠ACB,
∴∠FBC不一定等于∠FCB,
∴BF與CF不一定相等,
∴BD與CE不一定相等,故④錯誤.
故選C.
【考點精析】利用平行線的性質對題目進行判斷即可得到答案,需要熟知兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、F、B、C是半圓O上的四個點,四邊形OABC是平行四邊形,∠FAB=15°,連接OF交AB于點E,過點C作OF的平行線交AB的延長線于點D,延長AF交直線CD于點H.
(1)求證:CD是半圓O的切線;
(2)若DH=,求EF和半徑OA的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,以BC為直徑的圓交AC于點D,∠ABD=∠ACB.
(1)求證:AB是圓的切線;
(2)若點E是BC上一點,已知BE=4,tan∠AEB=,AB:BC=2:3,求圓的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上的一點,直線MN經過點C,過點A作直線MN的垂線,垂足為點D,且∠BAC=∠CAD.
(1)求證:直線MN是⊙O的切線;
(2)若CD=3,∠CAD=30°,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,以AB的中點D為圓心,作圓心角為90°的扇形DEF,點C恰在EF上,設∠BDF=α(0°<α<90°),當α由小到大變化時,圖中陰影部分的面積( )
A.由小到大 B.由大到小 C.不變 D.先由小到大,后由大到小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線(m>0)與x軸的交點為A,B.
(1)求拋物線的頂點坐標;
(2)橫、縱坐標都是整數(shù)的點叫做整點.
①當m=1時,求線段AB上整點的個數(shù);
②若拋物線在點A,B之間的部分與線段AB所圍成的區(qū)域內(包括邊界)恰有6個整點,結合函數(shù)的圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,半徑OA⊥OB,過點OA的中點C作FD∥OB交⊙O于D、F兩點,且CD=,以O為圓心,OC為半徑作,交OB于E點.
(1)求⊙O的半徑OA的長;
(2)計算陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com