△ABC和△A′B′C′,已知AB=A′B′,BC=B′C′,增加條件________后,△ABC≌△A′B′C′.

AC=A′C′或∠B=∠B′
分析:要使△ABC≌△A′B′C′,已知AB=A′B′,BC=B′C′,具備了兩組邊對應相等,還缺少邊或角對應相等的條件,結合判定方法及圖形進行選擇即可.
解答:可以增加條件AC=A′C′用SSS判斷全等;
若補充條件∠B=∠B′,則可用SAS判定其全等.
故填AC=A′C或∠B=∠B′.
點評:本題考查三角形全等的判定方法;判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時注意:AAA、SSA不能判定兩個三角形全等,不能添加,根據(jù)已知結合圖形及判定方法選擇條件是正確解答本題的關健.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

12、如圖,要使△ABC和△ADE相似,只需增加的一個條件是
∠ADE=∠ACB(答案不唯一)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,∠ABC和∠ACB的平分線交于E點,過點E 作MN∥BC交于點M,交AC于N點,若BM+CN=8,則線段MN的長為
8
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC的周長是22,OB、OC分別平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面積是
33
33

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

根據(jù)題意,把下列推理所依據(jù)的命題寫出來,并指出是公理還是定理.
(1)如圖所示,若∠1=∠2,則a∥b;
(2)在△ABC和△A′B′C′中,AB=A′B′,AC=A′C′,∠A=∠A′,則△ABC≌△A′B′C′;
(3)如果a=b,b=c,那么a=c.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,Rt△ABC和Rt△DEF中,∠ACB=∠DFE=90°,F(xiàn)為AB的中點,DF與AC交于點G,EF與BC交于點H,則AG、BH、GH滿足的等量關系為
GH2=AG2+BH2
GH2=AG2+BH2

查看答案和解析>>

同步練習冊答案