如圖,AB為⊙O的弦,若OA⊥OD且CD=BD.求證:BD是⊙O的切線.

【答案】分析:連接OB,要證明BD是⊙O的切線,只要證明OB⊥BD即可.
解答:證明:連接OB,
∵OA=OB,CD=DB,
∴∠OAC=∠OBC,∠DCB=∠DBC.
∵∠OAC+∠ACO=90°,∠ACO=∠DCB,
∴∠OBC+∠DBC=90°.
∴OB⊥BD.
即BD是⊙O的切線.
點(diǎn)評:本題考查的是切線的判定,要證某線是圓的切線,已知此線過圓上某點(diǎn),連接圓心和這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB為⊙O的弦,∠AOB=100°,點(diǎn)C在⊙O上,且
AC
=
BC
,則∠CAB的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB為⊙O的弦,過點(diǎn)O作AB的平行線,交⊙O于點(diǎn)C,直線OC上一點(diǎn)D滿足∠D=∠ACB.
(1)判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若⊙O的半徑等于4,tan∠ACB=
43
,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

54、如圖,AB為⊙O的弦,C、D為直線AB上兩點(diǎn),要使OC=OD,則圖中的線段必滿足的條件是
AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•閔行區(qū)三模)已知:如圖,AB為⊙O的弦,OD⊥AB,垂足為點(diǎn)D,DO的延長線交⊙O于點(diǎn)C.過點(diǎn)C作CE⊥AO,分別與AB、AO的延長線相交于E、F兩點(diǎn).CD=8,sin∠A=
35

求:(1)弦AB的長;
(2)△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB為⊙0的弦,⊙0的半徑為10,0C⊥AB于點(diǎn)D,交⊙0于點(diǎn)C,且CD=2,則弦AB的長是
12
12

查看答案和解析>>

同步練習(xí)冊答案