【題目】①將下列各數(shù)填入相應(yīng)的括號(hào)中:

0,-2019,7.01,+6,+30,

負(fù)數(shù):{ }

正數(shù):{ }

整數(shù):{ }

.畫(huà)一條數(shù)軸,在數(shù)軸上標(biāo)出以下各點(diǎn),然后用“<”符號(hào)連起來(lái).

---4);-|-1|;;0;2.5

【答案】1)見(jiàn)解析;(2)見(jiàn)解析.

【解析】

①根據(jù)正、負(fù)數(shù)和整數(shù)的定義進(jìn)行分類(lèi);

②把各數(shù)表示在數(shù)軸上,根據(jù)借助數(shù)軸比較有理數(shù)大小的方法,用連接各數(shù)即可.

0,-2019,7.01,+6,+30%,數(shù)中,

負(fù)數(shù)有:-2019;

正數(shù)有7.01,+6+30%;

整數(shù)有:0,-2019,+6

②∵--4=4-|-1|=-1,(-12=1,-22=-4

-22--|-1|0<(-122.5--4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上兩點(diǎn)間的距離等于這兩個(gè)點(diǎn)所對(duì)應(yīng)的數(shù)的差的絕對(duì)值.例:點(diǎn)A、B在數(shù)軸上對(duì)應(yīng)的數(shù)分別為a、b,則A、B兩點(diǎn)間的距離表示為AB|ab|.根據(jù)以上知識(shí)解題:

1)點(diǎn)A在數(shù)軸上表示3,點(diǎn)B在數(shù)軸上表示2,那么AB_______

2)在數(shù)軸上表示數(shù)a的點(diǎn)與﹣2的距離是3,那么a______

3)如果數(shù)軸上表示數(shù)a的點(diǎn)位于﹣42之間,那么|a+4|+|a2|______

4)對(duì)于任何有理數(shù)x,|x3|+|x6|是否有最小值?如果有,直接寫(xiě)出最小值.如果沒(méi)有.請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測(cè)試的成績(jī).測(cè)試規(guī)則為連續(xù)接球10個(gè),每墊球到位1個(gè)記1分.

運(yùn)動(dòng)員甲測(cè)試成績(jī)表

測(cè)試序號(hào)

1

2

3

4

5

6

7

8

9

10

成績(jī)(分)

7

6

8

7

7

5

8

7

8

7

(1)寫(xiě)出運(yùn)動(dòng)員甲測(cè)試成績(jī)的眾數(shù)和中位數(shù);

(2)在他們?nèi)酥羞x擇一位墊球成績(jī)優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰(shuí)更合適?為什么? (參考數(shù)據(jù):三人成績(jī)的方差分別為、、)

(3)甲、乙、丙三人相互之間進(jìn)行墊球練習(xí),每個(gè)人的球都等可能的傳給其他兩人,球最先從甲手中傳出,第三輪結(jié)束時(shí)球回到甲手中的概率是多少?(用樹(shù)狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了豐富課外活動(dòng),某校將購(gòu)買(mǎi)一些乒乓球拍和乒乓球,某商場(chǎng)銷(xiāo)售一種乒乓球拍和乒乓球,乒乓球拍每副定價(jià)80元,乒乓球每盒定價(jià)20元,“國(guó)慶節(jié)”期間商場(chǎng)決定開(kāi)展促銷(xiāo)活動(dòng),活動(dòng)期間向客戶提供兩種優(yōu)惠方案.

方案一:買(mǎi)一副乒乓球拍送一盒乒乓球;

方案二:乒乓球拍和乒乓球都按定價(jià)的90%付款.

某校要到該商場(chǎng)購(gòu)買(mǎi)乒乓球拍20副,乒乓球(>20且為整數(shù))

1)若按方案一購(gòu)買(mǎi),需付款 (用含的整式表示,要化簡(jiǎn)); 若按方案二購(gòu)買(mǎi),需付款 (用含的整式表示,要化簡(jiǎn)).

2)若30,通過(guò)計(jì)算說(shuō)明此時(shí)按哪種方案購(gòu)買(mǎi)較為合算?

3)當(dāng)30時(shí),你能給出一種更為省錢(qián)的購(gòu)買(mǎi)方案嗎?試寫(xiě)出你的購(gòu)買(mǎi)方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中, 點(diǎn)P從點(diǎn)A出發(fā),沿折線AB-BC向終點(diǎn)C運(yùn)動(dòng),在AB上以每秒8個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),在BC上以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng).動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CA方向以每秒個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng).P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P停止時(shí),點(diǎn)Q也隨之停止.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

(1)用含t的代數(shù)式表示線段AQ的長(zhǎng).

(2)當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),求PQ與△ABC一邊垂直時(shí)t的值.

(3)設(shè)△APQ的面積為SS>0),求St的函數(shù)關(guān)系式.

(4)當(dāng)△APQ是以PQ為腰的等腰三角形時(shí),直接寫(xiě)出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1是一段圓柱體的樹(shù)干的示意圖,已知樹(shù)干的半徑r=10cm,AD=45cm. (π值取3)

(1)若螳螂在點(diǎn)A處,蟬在點(diǎn)C處,圖1中畫(huà)出了螳螂捕蟬的兩條路線,即A→D→C和A→C,圖2是該圓柱體的側(cè)面展開(kāi)圖,判斷哪條路的距離較短,并說(shuō)明理由;

(2)若螳螂在點(diǎn)A處,蟬在點(diǎn)D處,螳螂想要捕到這只蟬,但又怕蟬發(fā)現(xiàn),于是螳螂繞到

后方去捕捉它,如圖3所示,求螳螂爬行的最短距離;(提示: =75)

(3)圖4是該圓柱體的側(cè)面展開(kāi)圖,蟬N在半徑為10cm的⊙O的圓上運(yùn)動(dòng),⊙O與BC相切,點(diǎn)O到CD的距離為20cm,螳螂M在線段AD運(yùn)動(dòng)上,連接MN,MN即為螳螂捕蟬時(shí)螳螂爬行的距離,若要使MN與⊙O總是相切,求MN的長(zhǎng)度范圍.

圖1 圖2 圖3 圖4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,ABCD,直線EF分別交AB、CD于點(diǎn)EF,EG平分∠AEF,FH平分∠EFD.求證:EGFH

請(qǐng)完成以下證明過(guò)程:

證明:∵ABCD(已知)

∴∠AEF=EFD__________________

EG平分∠AEF,FH平分∠EFD__________

∴∠___AEF,___= EFD____________

∴∠_____=______(等量代換)

EGFH__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l1yx+bx軸交于點(diǎn)A,與y軸交于點(diǎn)B,且點(diǎn)C的坐標(biāo)為(4,﹣4).

1)點(diǎn)A的坐標(biāo)為   ,點(diǎn)B的坐標(biāo)為   ;(用含b的式子表示)

2)當(dāng)b4時(shí),如圖所示.連接AC,BC,判斷ABC的形狀,并證明你的結(jié)論;

3)過(guò)點(diǎn)C作平行于y軸的直線l2,點(diǎn)P在直線l2上.當(dāng)﹣5b4時(shí),在直線l1平移的過(guò)程中,若存在點(diǎn)P使得ABP是以AB為直角邊的等腰直角三角形,請(qǐng)直接寫(xiě)出所有滿足條件的點(diǎn)P的縱坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知一次函數(shù)的圖象經(jīng)過(guò)兩點(diǎn).求這個(gè)一次函數(shù)的解析式;并判斷點(diǎn)是否在這個(gè)一次函數(shù)的圖象上;

2)如圖所示,點(diǎn)D是等邊內(nèi)一點(diǎn),,,,將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到的位置,求的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案