如果=5,則

[  ]

A.a(chǎn)與b成正比例
B.a(chǎn)與成正比例
C.a(chǎn)與b成反比例
D.a(chǎn)與成反比例
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如果
x(x-6)
=
x
x-6
成立,則(  )
A、x≥6B、0≤x≤6
C、x≥0D、x為任意實數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué) 三點一測叢書 八年級數(shù)學(xué) 下。ńK版課標(biāo)本) 江蘇版 題型:013

反比例函數(shù)中系數(shù)k的幾何意義

  反比例函數(shù)y=(k≠0)任取一點M(a,b),過M作MA⊥x軸,MB⊥y軸,所得矩形OAMB的面積為S=MA·MB=|b|·|a|=|ab|.又因為b=,故ab=k,所以S=|k|(如圖(1)).

  這就是說,過雙曲線上任意一點作x軸、y軸的垂線,所得的矩形面積為|k|.這就是k的幾何意義,會給解題帶來方便.現(xiàn)舉例如下:

  例1:如(2)圖,已知點P1(x1,y1)和P2(x2,y2)都在反比例函數(shù)y=(k<0)的圖像上,試比較矩形P1AOB與矩形P2COD的面積大小.

  解答:=|k|

  =|k|

  故

  例2:如圖(3),在y=(x>0)的圖像上有三點A、B、C,經(jīng)過三點分別向x軸引垂線,交x軸于A1、B1、C1三點,連結(jié)OA、OB、OC,記△OAA1、△OBB1、△OCC1的面積分別為S1、S2、S3,則有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=,

  |k|=

  |k|=

  S1=S2=S3,故選A.

  例3:一個反比例函數(shù)在第三象限的圖像如圖(4)所示,若A是圖像任意一點,AM⊥x軸,垂足為M,O是原點,如果△AOM的面積是3,那么這個反比例函數(shù)的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲線在第三象限

  ∴k>0∴k=6

  ∴所以反比例函數(shù)的解析式為y=

  根據(jù)是述意義,請你解答下題:

  如圖(5),過反比例函數(shù)y=(x>0)的圖像上任意兩點A、B分別作軸和垂線,垂足分別為C、D,連結(jié)OA、OB,設(shè)AC與OB的交點為E,△AOE與梯形ECDB的面積分別為S1、S2,比較它們的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小關(guān)系不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

探索研究

(1)觀察一列數(shù)2,4,8,16,32,…,發(fā)現(xiàn)從第二項開始,每一項與前一項之比是一個常數(shù),這個常數(shù)是         ;根據(jù)此規(guī)律,如果為正整數(shù))表示這個數(shù)列的第項,那么         ,         

(2)如果欲求的值,可令

……………………………………………………①

將①式兩邊同乘以3,得

                      ………………………………………………………②

由②減去①式,得

                     

(3)用由特殊到一般的方法知:若數(shù)列,從第二項開始每一項與前一項之比的常數(shù)為,則         (用含的代數(shù)式表示),如果這個常數(shù),那么         (用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

如果半徑為R的圓和邊長為R+1的正方形的面積相等,則

A.                             B.

C.                          D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:022

用換元法解方程時,如果設(shè),則原方程可化為關(guān)于y的一元二次方程的一般形式是                        。

查看答案和解析>>

同步練習(xí)冊答案