如圖,已知直線AB、CD、MN相交于點(diǎn)O,∠1=22°,∠2=46°,求∠3的度數(shù).
分析:首先根據(jù)平角為180°可以計(jì)算出∠BOC的度數(shù),再根據(jù)對(duì)頂角相等可得∠3=∠BOC,進(jìn)而得到答案.
解答:解:∵∠1=22°,∠2=46°,
∴∠BOC=180°-22°-46°=112°,
∴∠3=∠BOC=112°.
點(diǎn)評(píng):此題主要考查了對(duì)頂角和平角的性質(zhì),關(guān)鍵是掌握對(duì)頂角相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖,已知直線AB,CD相交于點(diǎn)O,OA平分∠EOC,∠EOC=70°,則∠BOD的度數(shù)等于
35
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,已知直線AB、CD相交于點(diǎn)O,OE平分∠BOC,如果∠BOE=50°,那么∠AOC=
80
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知直線AB和CD相交于O點(diǎn),∠DOE是直角,OF平分∠AOE,∠BOD=22°,求∠COF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線AB∥CD,∠A=∠C=100°,E、F在CD上,且滿足∠DBF=∠ABD,BE平分∠CBF.
(1)直線AD與BC有何位置關(guān)系?請(qǐng)說(shuō)明理由.
(2)求∠DBE的度數(shù).
(3)若平行移動(dòng)AD,在平行移動(dòng)AD的過(guò)程中,是否存在某種情況,使∠BEC=∠ADB?若存在,求出其度數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線AB∥CD,EM⊥FM,∠MFD=25°,求∠MEB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案