已知拋物線y=-2x2+4x-m的最大值為0,則m的值是   ▲   
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(11·臺州)(14分)已知拋物線y=a(x-m)2+n與y軸交于點A,它的頂點為

點B,點A、B關(guān)于原點O的對稱點分別為C、D.若A、B、C、D中任何三點都不在一直

線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.

(1)如圖1,求拋物線y=(x-2)2+1的伴隨直線的解析式.

(2)如圖2,若拋物線y=a(x-m)2+n(m>0)的伴隨直線是y=x-3,伴隨四邊形的面積為12,求此拋物線的解析式.

(3)如圖3,若拋物線y=a(x-m)2+n的伴隨直線是y=-2x+b(b>0),且伴隨四邊形ABCD是矩形.

①用含b的代數(shù)式表示m、n的值;

②在拋物線的對稱軸上是否存在點P,使得△PBD是一個等腰三角形?若存在,請直接寫出點P的坐標(biāo)(用含b的代數(shù)式表示),若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(11·臺州)(14分)已知拋物線y=a(x-m)2+n與y軸交于點A,它的頂點為
點B,點A、B關(guān)于原點O的對稱點分別為C、D.若A、B、C、D中任何三點都不在一直
線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.
(1)如圖1,求拋物線y=(x-2)2+1的伴隨直線的解析式.
(2)如圖2,若拋物線y=a(x-m)2+n(m>0)的伴隨直線是y=x-3,伴隨四邊形的面積為12,求此拋物線的解析式.
(3)如圖3,若拋物線y=a(x-m)2+n的伴隨直線是y=-2x+b(b>0),且伴隨四邊形ABCD是矩形.
①用含b的代數(shù)式表示m、n的值;
②在拋物線的對稱軸上是否存在點P,使得△PBD是一個等腰三角形?若存在,請直接寫出點P的坐標(biāo)(用含b的代數(shù)式表示),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆山東省濟(jì)寧地區(qū)九年級第一學(xué)期期中考試數(shù)學(xué)試卷 題型:填空題

已知拋物線y=-x2+2x+3的頂點為P,與x軸的兩個交點為A,B,那么△ABP的面積等于           

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(湖南郴州卷)數(shù)學(xué) 題型:解答題

(11·臺州)(14分)已知拋物線y=a(x-m)2+n與y軸交于點A,它的頂點為

點B,點A、B關(guān)于原點O的對稱點分別為C、D.若A、B、C、D中任何三點都不在一直

線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.

(1)如圖1,求拋物線y=(x-2)2+1的伴隨直線的解析式.

(2)如圖2,若拋物線y=a(x-m)2+n(m>0)的伴隨直線是y=x-3,伴隨四邊形的面積為12,求此拋物線的解析式.

(3)如圖3,若拋物線y=a(x-m)2+n的伴隨直線是y=-2x+b(b>0),且伴隨四邊形ABCD是矩形.

①用含b的代數(shù)式表示m、n的值;

②在拋物線的對稱軸上是否存在點P,使得△PBD是一個等腰三角形?若存在,請直接寫出點P的坐標(biāo)(用含b的代數(shù)式表示),若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

已知拋物線y=x2+2x上三點A(-5,y1),B(1,y2),C(12,y3),則y1,y2,y3滿足的關(guān)系式為


  1. A.
    y1<y2<y3
  2. B.
    y3<y2<y1
  3. C.
    y2<y1<y3
  4. D.
    y3<y1<y2

查看答案和解析>>

同步練習(xí)冊答案