已知,在矩形ABCD中,AB=4,BC=2,點M為邊BC的中點,點P為邊CD上的動點(點P異于C,D兩點).連接PM,過點P作PM的垂線與射線DA相交于點E(如圖),設(shè)CP=x,DE=y.
(1)寫出y與x之間的關(guān)系式;
(2)若點E與點A重合,則x的值為;
(3)是否存在點P,使得點D關(guān)于直線PE的對稱點D′落在邊AB上?若存在,求x的值;若不存在,請說明理由.
作業(yè)寶

解:(1)∵PE⊥PM,∴∠EPM=90°,
∴∠DPE+∠CPM=90°,
又矩形ABCD,∴∠D=90°,
∴∠DPE+∠DEP=90°,
∴∠CPM=∠DEP,又∠C=∠D=90°,
∴△CPM∽△DEP,
=,
又CP=x,DE=y,AB=DC=4,∴DP=4-x,
又M為BC中點,BC=2,∴CM=1,
=
則y=-x2+4x;

(2)當E與A重合時,DE=AD=2,
∵△CPM∽△DEP,
=,
又CP=x,DE=2,CM=1,DP=4-x,
=,即x2-4x+2=0,
解得:x=2+或x=2-
則x的值為2+或2-;

(3)存在,過P作PH⊥AB于點H,

∵點D關(guān)于直線PE的對稱點D′落在邊AB上,
∴PD′=PD=4-x,ED′=ED=y=-x2+4x,EA=AD-ED=x2-4x+2,∠PD′E=∠D=90°,
在Rt△D′PH中,PH=2,D′P=DP=4-x,
根據(jù)勾股定理得:D′H==,
∵∠ED′A=180°-90°-∠PD′H=90°-∠PD′H=∠D′PH,∠PD′E=∠PHD′=90°,
∴△ED′A∽△D′PH,
=,即==x=,
整理得:2x2-4x+1=0,
解得:x=,
當x=時,點D關(guān)于直線PE的對稱點D′落在邊AB上.
故答案為:(1)y=-x2+4x;(2)2+或2-
分析:(1)由PE與PM垂直,利用平角的定義得到一對角互余,再由矩形的內(nèi)角為直角,得到三角形DPE為直角三角形,可得出此直角三角形中一對銳角互余,利用同角的余角相等得到一對角相等,利用兩對對應(yīng)角相等的兩三角形相似得到三角形PCM與三角形DPE相似,由相似得比例,將各自的值代入,即可列出y關(guān)于x的函數(shù)關(guān)系式;
(2)當E與A重合時,DE=DA=2,將y=2代入第一問得出的y與x的關(guān)系式中,即可求出x的值;
(3)存在,理由為:如圖所示,過P作PH垂直于AB,由對稱的性質(zhì)得到:PD′=PD=4-x,ED′=ED=y=-x2+4x,EA=AD-ED=x2-4x+2,∠PD′E=∠D=90°,在Rt△D′PH中,PH=2,D′P=DP=4-x,根據(jù)勾股定理表示出D′H,再由△ED′A∽△D′PH,由相似得比例,將各自表示出的式子代入,可列出關(guān)于x的方程,求出方程的解即可得到滿足題意的x的值.
點評:此題屬于相似形綜合題,涉及的知識有:相似三角形的判定與性質(zhì),對稱的性質(zhì),矩形的性質(zhì),以及一元二次方程的應(yīng)用,利用了數(shù)形結(jié)合的數(shù)學(xué)思想,靈活運用相似三角形的判定與性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,在矩形ABCD中,AB=3,AD=4,以點A為圓心,r為半徑畫圓,矩形的四個頂點恰好有一個在⊙A外,則半徑r的范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示,已知:在矩形ABCD中,AB=6,點P在AD邊上.
(1)如果∠BPC=90°,求證:△ABP∽△DPC;
(2)在問題(1)中,當AD=13時,求tan∠PBC;
(3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點,過點M作MN∥BC交PC于點N,分別過點M,N作ME⊥BC于點E,NF⊥BC于點F,并且矩形MEFN和矩形ABCD的長與寬之比相等,求MN.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•臨沂)已知,在矩形ABCD中,AB=a,BC=b,動點M從點A出發(fā)沿邊AD向點D運動.
(1)如圖1,當b=2a,點M運動到邊AD的中點時,請證明∠BMC=90°;
(2)如圖2,當b>2a時,點M在運動的過程中,是否存在∠BMC=90°,若存在,請給與證明;若不存在,請說明理由;
(3)如圖3,當b<2a時,(2)中的結(jié)論是否仍然成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•北塘區(qū)一模)已知,在矩形ABCD中,AB=4cm,BC=3cm,點M為邊BC的中點,點P為邊CD上的動點(點P異于C,D兩點),點P從點C出發(fā),以2cm/s的速度,沿CD作勻速運動.連接PM,過點P作PM的垂線與邊DA相交于點E(如圖),設(shè)點P運動的時間為t(s)
(1)DE的長為
-
8
3
t2+
16
3
t
-
8
3
t2+
16
3
t
(用含t的代數(shù)式表示);
(2)若點P從點C出發(fā)的同時,直線BD沿著射線AD的方向以3cm/s的速度從D點出發(fā),以CP長為直徑作圓⊙O,當點P到達點D時,直線BD也停止運動.當⊙O與直線BD相切時,求DE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•重慶)已知,在矩形ABCD中,E為BC邊上一點,AE⊥DE,AB=12,BE=16,F(xiàn)為線段BE上一點,EF=7,連接AF.如圖1,現(xiàn)有一張硬質(zhì)紙片△GMN,∠NGM=90°,NG=6,MG=8,斜邊MN與邊BC在同一直線上,點N與點E重合,點G在線段DE上.如圖2,△GMN從圖1的位置出發(fā),以每秒1個單位的速度沿EB向點B勻速移動,同時點P從A點出發(fā),以每秒1個單位的速度沿AD向點D勻速移動,點Q為直線GN與線段AE的交點,連接PQ.當點N到達終點B時,△GMN和點P同時停止運動.設(shè)運動時間為t秒,解答下列問題:

(1)在整個運動過程中,當點G在線段AE上時,求t的值;
(2)在整個運動過程中,是否存在點P,使△APQ是等腰三角形?若存在,求出t的值;若不存在,說明理由;
(3)在整個運動過程中,設(shè)△GMN與△AEF重疊部分的面積為S.請直接寫出S與t之間的函數(shù)關(guān)系式以及自變量t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案