如圖所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,點(diǎn)M是線段BC上一定點(diǎn),且MC=8.動(dòng)點(diǎn)P從C點(diǎn)出發(fā)沿C?D?A?B的路線運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)B停止.在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,使△PMC為等腰三角形的點(diǎn)P有    個(gè).
【答案】分析:連接DM,根據(jù)已知分析可得滿足等腰三角形的多種情況:PM=CM或CP=CM或CM=PM,然后根據(jù)勾股定理進(jìn)行分析計(jì)算.
解答:解:連接DM
根據(jù)已知,得AD∥BM,AD=BM=6,則四邊形ABDM是平行四邊形.又∠ABC=90°,則四邊形ABDM是矩形.所以∠DMC=90°,根據(jù)勾股定理,得CD=10.
①作CM的垂直平分線交CD于P,則三角形PMC是等腰三角形,此時(shí)CP=5;
②當(dāng)CP=CM=8時(shí),三角形PMC是等腰三角形;
③當(dāng)點(diǎn)P在AD上,DP=2時(shí),CM=PM;
④當(dāng)點(diǎn)P在AB上,BP=2時(shí),CM=PM;
故有四個(gè).
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)梯形的性質(zhì)及等腰梯形的判定的理解及運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知如圖所示,在梯形ABCD中,AD∥BC,AB=AD=DC=8,∠B=60°,連接AC.
(1)求cos∠ACB的值;
(2)若E、F分別是AB、DC的中點(diǎn),連接EF,求線段EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,點(diǎn)M是線段BC上一定點(diǎn),且MC=8.動(dòng)點(diǎn)P從C點(diǎn)出發(fā)沿C?D?A?B的路線運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)B停止.在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,使△PMC為等腰三角形的點(diǎn)P有
 
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,點(diǎn)M是線段BC上一定點(diǎn),且MC=8.動(dòng)點(diǎn)P從C點(diǎn)出發(fā)沿C→D→A→B的路線運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)B停止.在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,使△PMC為等腰三角形的點(diǎn)P有幾個(gè)?并求出相應(yīng)等腰三角形的腰長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4,DO垂直于AB.則腰長(zhǎng)是
 
.若P是梯形的對(duì)稱軸L上的點(diǎn),那么使△PDB為等腰三角形的點(diǎn)有
 
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在梯形ABCD中,AB∥DC,EF是梯形的中位線,AC交EF于G,BD交EF于H,以下說(shuō)法錯(cuò)誤的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案