九(1)班數(shù)學興趣小組在社會實踐活動中,進行了如下的課題研究:用一定長度的鋁合金材料,將它設計成外觀為長方形的三種框架,使長方形框架面積最大.

小組討論后,同學們做了以下三種試驗:

請根據(jù)以上圖案回答下列問題:

(1)在圖案①中,如果鋁合金材料總長度(圖中所有黑線的長度和)為6 m,當AB為1 m,長方形框架ABCD的面積是__________m2;

(2)在圖案②中,如果鋁合金材料總長度為6 m,設AB為x m,長方形框架ABCD?的面積為S=________(用含x的代數(shù)式表示);當AB=_______m時,長方形框架ABCD的面積S最大;

在圖案③中,如果鋁合金材料總長度為l m,設AB為x m,當AB=________m時,長方形框架ABCD的面積S最大.

(3)經過這三種情形的試驗,他們發(fā)現(xiàn)對于圖案④這樣的情形也存在著一定的規(guī)律.

探索:如圖案④,如果鋁合金材料總長度為l m共有n條豎檔時,那么當豎檔AB多少時,長方形框架ABCD的面積最大.

答案:
解析:

思路解析:用函數(shù)考慮.當AB為x m,列出面積的表達式,構成方程或函數(shù),用它們的性質解決問題.

(1)圖案①中,當AB為1 m時,AD=(6-1×2)÷3=(m),面積是S=1×=(m2).

(2)圖案②中,當AB為x(0<X2+2x,當x=1時,S有最大值.

圖案③中,當AB為x(0<X<)時,AD =(l-4x)÷3=,面積是S=(x2-x),當時,S有最大值.

(3)圖案④中,當AB為x(0<X<)時,AD =(l-nx)÷3=,面積是S=(x2-x),當時,S有最大值.

解:(1). (2)-x2+2x,1,.

(3)設AB長為x m,那么AD為,

S=x·.

時,S最大.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

九年級甲班數(shù)學興趣小組組織社會實踐活動,目的是測量一山坡的護坡石壩高度及石壩與地面的傾角∠α.
精英家教網
(1)如圖1,小明所在的小組用一根木條EF斜靠在護坡石壩上,使得BF與BE的長度相等,如果測量得到∠EFB=36°,那么∠α的度數(shù)是
 
;
(2)如圖2,小亮所在的小組把一根長為5米的竹竿AG斜靠在石壩旁,量出竿長1米時離地面的高度為0.6米,請你求出護坡石壩的垂直高度AH;
(3)全班總結了各組的方法后,設計了如圖3方案:在護坡石壩頂部的影子處立一根長為a米的桿子PD,桿子與地面垂直,測得桿子的影子長為b米,點P到護坡石壩底部B的距離為c米,如果利用(1)得到的結論,請你用a、b、c表示出護坡石壩的垂直高度AH.
(sin72°≈0.95,cos72°≈0.3,tan72°≈3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

九年級甲班數(shù)學興趣小組組織社會實踐活動,目的是測量一山坡的護坡石壩高度及石壩與地面的傾角∠α.
(1)如圖1,小明所在的小組用一根木條EF斜靠在護坡石壩上,使得BF與BE的長度相等,如果測量得到∠EFB=36°,求∠α的度數(shù)
(2)如圖2,小亮所在的小組把一根長為5米的竹竿AG斜靠在石壩旁,量出竹竿GM長1米時離地面的高度MN為0.6米,求護坡石壩的垂直高度AH長
(3)全班總結了各組的方法后,設計了如圖3方案:在護坡石壩頂部的影子處有一棵大樹PD,測得大樹的影子長CP為9米,點P到護坡石壩底部B的距離為3米,如果利用(1)、(2)中得到的結論,求出大樹PD的高度.
(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.3,tan72°≈3.0 )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

九年級甲班數(shù)學興趣小組組織社會實踐活動,目的是測量一山坡的護坡石壩高度及石壩與地面的傾角∠α.
(1)如圖1,小明所在的小組用一根木條EF斜靠在護坡石壩上,使得BF與BE的長度相等,如果測量得到∠EFB=36°,求∠α的度數(shù)
(2)如圖2,小亮所在的小組把一根長為5米的竹竿AG斜靠在石壩旁,量出竹竿GM長1米時離地面的高度MN為0.6米,求護坡石壩的垂直高度AH長
(3)全班總結了各組的方法后,設計了如圖3方案:在護坡石壩頂部的影子處有一棵大樹PD,測得大樹的影子長CP為9米,點P到護坡石壩底部B的距離為3米,如果利用(1)、(2)中得到的結論,求出大樹PD的高度.
(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.3,tan72°≈3.0 )

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山東省聊城市冠縣實驗中學中考數(shù)學二模試卷(解析版) 題型:解答題

九年級甲班數(shù)學興趣小組組織社會實踐活動,目的是測量一山坡的護坡石壩高度及石壩與地面的傾角∠α.

(1)如圖1,小明所在的小組用一根木條EF斜靠在護坡石壩上,使得BF與BE的長度相等,如果測量得到∠EFB=36°,那么∠α的度數(shù)是______;
(2)如圖2,小亮所在的小組把一根長為5米的竹竿AG斜靠在石壩旁,量出竿長1米時離地面的高度為0.6米,請你求出護坡石壩的垂直高度AH;
(3)全班總結了各組的方法后,設計了如圖3方案:在護坡石壩頂部的影子處立一根長為a米的桿子PD,桿子與地面垂直,測得桿子的影子長為b米,點P到護坡石壩底部B的距離為c米,如果利用(1)得到的結論,請你用a、b、c表示出護坡石壩的垂直高度AH.
(sin72°≈0.95,cos72°≈0.3,tan72°≈3)

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省臺州市溫嶺市中考模擬試卷(解析版) 題型:解答題

九年級甲班數(shù)學興趣小組組織社會實踐活動,目的是測量一山坡的護坡石壩高度及石壩與地面的傾角∠α.

(1)如圖1,小明所在的小組用一根木條EF斜靠在護坡石壩上,使得BF與BE的長度相等,如果測量得到∠EFB=36°,那么∠α的度數(shù)是______;
(2)如圖2,小亮所在的小組把一根長為5米的竹竿AG斜靠在石壩旁,量出竿長1米時離地面的高度為0.6米,請你求出護坡石壩的垂直高度AH;
(3)全班總結了各組的方法后,設計了如圖3方案:在護坡石壩頂部的影子處立一根長為a米的桿子PD,桿子與地面垂直,測得桿子的影子長為b米,點P到護坡石壩底部B的距離為c米,如果利用(1)得到的結論,請你用a、b、c表示出護坡石壩的垂直高度AH.
(sin72°≈0.95,cos72°≈0.3,tan72°≈3)

查看答案和解析>>

同步練習冊答案