如圖,已知在四邊形ABCD中,∠BAD=∠BCD=90°,BC=CD,E是AD延長(zhǎng)線上一點(diǎn),若DE=AB=3cm,CE=數(shù)學(xué)公式cm.
(1)試證明△ABC≌△EDC;
(2)試求出線段AD的長(zhǎng).

(1)證明:在四邊形ABCD中,∵∠BAD=∠BCD=90°,
∴90°+∠B+90°+∠ADC=360°,
∴∠B+∠ADC=180°,
又∵∠CDE+∠ADE=180°,
∴∠B=∠CDE,
在△ABC和△EDC中,,
∴△ABC≌△EDC(SAS);

(2)解:∵△ABC≌△EDC,
∴AC=EC,∠ACB=∠ECD,
∵∠BCD=∠ACB+∠ACD=90°,
∴∠ACE=∠ECD+∠ACD=90°,
∴△ACE是等腰直角三角形,
∵CE=4cm,
∴AE=4×=8cm,
∴AD=AE-DE=8-3=5cm.
分析:(1)根據(jù)四邊形的內(nèi)角和等于360°求出∠B+∠ADC=180°,再根據(jù)鄰補(bǔ)角的和等于180°可得∠CDE+∠ADE=180°,從而求出∠B=∠CDE,然后根據(jù)“邊角邊”證明即可;
(2)根據(jù)全等三角形對(duì)應(yīng)邊相等可得AC=EC,全等三角形對(duì)應(yīng)角相等可得∠ACB=∠ECD,然后求出∠ACE=90°,得到△ACE是等腰直角三角形,求出AE的長(zhǎng)度,再根據(jù)AD=AE-DE代入數(shù)據(jù)進(jìn)行計(jì)算即可得解.
點(diǎn)評(píng):本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),根據(jù)四邊形的內(nèi)角和定理以及鄰補(bǔ)角的定義,利用同角的補(bǔ)角相等求出夾角相等是證明三角形全等的關(guān)鍵,也是本題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在四邊形ABCD中,AD=AB,CD=CB,則∠D=∠B,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在四邊形ABCD中,∠C=90°,AB=AD=10,cos∠ABD=
25
,∠BDC=60°.求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在四邊形ABCD中,AC與BD相交于點(diǎn)O,AB⊥AC,CD⊥BD.
(1)求證:△AOD∽△BOC;
(2)若sin∠ABO=
23
,S△AOD=4,求S△BOC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•奉賢區(qū)一模)如圖,已知在四邊形ABCD中,AC⊥AB,BD⊥CD,AC與BD相交于點(diǎn)E,S△AED=9,S△BEC=25.
(1)求證:∠DAC=∠CBD;
(2)求cos∠AEB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在四邊形ABCD中,∠ABC=2∠ADC=2a,點(diǎn)E、F分別在CB、CD的延長(zhǎng)線上,且EB=AB+AD,∠AEB=∠FAD,猜想線段AE、AF的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案