已知將一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠COD=30°)如圖1擺放,點O、A、C在一條直線上.將直角三角板OCD繞點O逆時針方向轉(zhuǎn)動,變化擺放如圖位置
(1)如圖1,當點O、A、C在同一條直線上時,∠BOD的度數(shù)是______;如圖2,若要OB恰好平分∠COD,則∠AOC的度數(shù)是______.

(2)如圖3,當三角板OCD擺放在∠AOB內(nèi)部時,作射線OM平分∠AOC,射線ON平分∠BOD,如果三角板OCD在∠AOB內(nèi)繞點O任意轉(zhuǎn)動,∠MON的度數(shù)是否發(fā)生變化?如果不變,求其值;如果變化,說明理由.

(3)當三角板OCD從圖1的位置開始,繞點O逆時針方向旋轉(zhuǎn)一周,保持射線OM平分∠AOC、射線ON平分∠BOD(∠AOC≤180°,∠BOD≤180°),在旋轉(zhuǎn)過程中,(2)中的結論是否保持不變?如果保持不變,請說明理由;如果變化,請說明變化的情況和結果(即旋轉(zhuǎn)角度a在什么范圍內(nèi)時∠MON的度數(shù)是多少).

解:(1)∠BOD=90°-∠COD=90°-30°=60°,
∠AOC=90°-∠COD=90°-×30°=75°.

(2)不變,60°.
根據(jù)圖中所示∠MON=(∠AOB-∠COD)+∠COD=(90°-30°)+30°=60度.

(3)①當0°<α<180°時,
∠MON=(90°+∠BOC)+(30°+∠BOC)-∠BOC=60°
②α=180°時,即∠AOC為平角,
(1)點M在OB上,
∴∠MOD=∠BOC+∠COD=90°+30°=120°,
又∵ON平分∠BOD,
∴∠MON=120×=60度.
(2)點M在BO上,
∠MON=180°-60°=120度.
故∠MON=60°或120°
③180°<α<240°時,
2(30°+∠MOD)+90°+∠CON+(∠CON+30°)=360°,
解得:∠MOD+∠CON=90°,則
∠MON=90°+30°=120°
④240°<α<360°時,
∠MON=(30°-∠AOD)+(90°-∠AOD)+∠AOD=60度.
分析:利用三角板角的特征和角平分線的定義解答:
(1)由圖可得角之間的關系:∠BOD=90°-∠COD,∠AOC=90°-∠COD,據(jù)此解答;
(2)由圖可得角之間的關系:∠MON=(∠AOB-∠COD)+∠COD;
(3)可分以下情況考慮:①當0°<α<180°時;②α=180°時,兩種情況:點M在OB上和點M在BO上;③180°<α<240°時;④240°<α<360°時.
點評:此題很復雜,難點是找出變化過程中的不變量,需要結合圖形來計算,對同學們的作圖、分析、計算能力有較高要求.在計算分析的過程中注意動手操作,在旋轉(zhuǎn)的過程中得到不變的量.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

18、如圖,將一副三角板的直角頂點O點重合,擺放在桌面上,若∠AOD=156°,則∠BOC的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、將一副三角板的直角重合放置,如圖1所示,
(1)圖1中∠BEC的度數(shù)為
165°

(2)三角板△AOB的位置保持不動,將三角板△COD繞其直角頂點O順時針方向旋轉(zhuǎn):
①當旋轉(zhuǎn)至圖2所示位置時,恰好OD∥AB,求此時∠AOC的大小;
②若將三角板△COD繼續(xù)繞O旋轉(zhuǎn),直至回到圖1位置,在這一過程中,是否還會存在△COD其中一邊能與AB平行?如果存在,請你畫出圖形,并直接寫出相應的∠AOC的大小;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

附加題:
已知將一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠COD=30°)如圖1擺放,點O、A、C在一條直線上.將直角三角板OCD繞點O逆時針方向轉(zhuǎn)動,變化擺放如圖位置
(1)如圖1,當點O、A、C在同一條直線上時,∠BOD的度數(shù)是
 
;如圖2,若要OB恰好平分∠COD,則∠AOC的度數(shù)是
 

精英家教網(wǎng)
(2)如圖3,當三角板OCD擺放在∠AOB內(nèi)部時,作射線OM平分∠AOC,射線ON平分∠BOD,如果三角板OCD在∠AOB內(nèi)繞點O任意轉(zhuǎn)動,∠MON的度數(shù)是否發(fā)生變化?如果不變,求其值;如果變化,說明理由.
精英家教網(wǎng)
(3)當三角板OCD從圖1的位置開始,繞點O逆時針方向旋轉(zhuǎn)一周,保持射線OM平分∠AOC、射線ON平分∠BOD(∠AOC≤180°,∠BOD≤180°),在旋轉(zhuǎn)過程中,(2)中的結論是否保持不變?如果保持不變,請說明理由;如果變化,請說明變化的情況和結果(即旋轉(zhuǎn)角度a在什么范圍內(nèi)時∠MON的度數(shù)是多少).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知將一幅三角板(直角三角板OAB和直角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=30°)
(1)如圖1擺放,點O、A、C在一條直線上,∠BOD的度數(shù)是
60°
60°
;
(2)如圖2,變化擺放位置將直角三角板COD繞點O逆時針方向轉(zhuǎn)動,若要OB恰好平分∠COD,則∠AOC的度數(shù)是
75°
75°

(3)如圖3,當三角板OCD擺放在∠AOB內(nèi)部時,作射線OM平分∠AOC.射線ON平分∠BOD,如果三角板OCD在∠AOB內(nèi)繞點O任意轉(zhuǎn)動,∠MON的度數(shù)是否發(fā)生變化?如果不變,求其值;如果變化,說明理由.

查看答案和解析>>

同步練習冊答案