(本小題滿分12分)你還記得圖形的旋轉(zhuǎn)嗎?如圖,P是正方形ABCD內(nèi)一點,
PA=a,PB=2a,PC=3a.將△APB繞點B按順時針方向旋轉(zhuǎn),使AB與BC重合,得△CBP,.

⑴ 求證:△PBP,是等腰直角三角形;
⑵ 猜想△PCP,的形狀,并說明理由.
解:(1)證明:由圖形旋轉(zhuǎn)可知:△APB≌△CP′B , ……………2分
BP=BP′=2a, AP=CP′=a.且∠ABP=∠CBP′………2分
由四邊形ABCD是正方形,得∠ABC=90°,
∠PBP′=90,  ∴△PBP′是等腰直角三角形。………4分
(2) 由(1)所證△PBP′是等腰直角三角形,
∴PP′=,      ……………2分
在△PP′C中,PP′=,PC = ,CP′=
          ……………2分
∴△PCP,是直角三角形
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在下列圖形中,為軸對稱圖形的是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分,第(1)小題4分,第(2)小題①6分、第(2)小題②4分)
直角三角板ABC中,∠A=30°,BC=1.將其繞直角頂點C逆時針旋轉(zhuǎn)一個角≠ 90°),得到Rt△
(1)如圖9,當(dāng)邊經(jīng)過點B時,求旋轉(zhuǎn)角的度數(shù);
(2)在三角板旋轉(zhuǎn)的過程中,邊與AB所在直線交于點D,過點 D作DE∥邊于點E,聯(lián)結(jié)BE.
①當(dāng)時,設(shè),,求之間的函數(shù)解析式及定義域;
②當(dāng)時,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一個正多邊形的每個外角都是,則這個正多邊形的邊數(shù)是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

△ABC的三個頂點的坐標(biāo)分別為A(1,0)、B(3,0)、C(2,-4),將△ABC各點的橫坐標(biāo)都乘以-1,得到△DEF,則△DEF與△ABC的位置關(guān)系是(    )
A.關(guān)于x軸對稱B.關(guān)于y軸對稱
C.關(guān)于原點對稱D.△DEF是△ABC向下平移1個單位得到的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(2011年青海,9,2分)若點A(2,a)關(guān)于x軸的對稱點是B(b,-3)則ab的值是         .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列圖案是幾種名車的標(biāo)志,請你指出,在這幾個圖案中是軸對稱圖形的共有(   )
A.4個B.3個C.2個D. 1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(11·臺州)點D、E分別在等邊△ABC的邊AB、BC上,將△BDE沿直線DE
翻折,使點B落在B1處,DB1、EB1分別交邊AC于點F、G.若∠ADF=80º,則∠CGE
        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的長.
小萍同學(xué)靈活運用軸對稱知識,將圖形進行翻折變換如圖1.她分別以AB、AC為對稱軸,畫出△ABD、△ACD的軸對稱圖形,D點的對稱點為E、F,延長EB、FC相交于G點,得到四邊形AEGF是正方形.設(shè)AD=x,利用勾股定理,建立關(guān)于x的方程模型,求出x的值.

(1)請你幫小萍求出x的值.
(2)  參考小萍的思路,探究并解答新問題:
如圖2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.請你按照小萍的方法畫圖,得到四邊形AEGF,求△BGC的周長.(畫圖所用字母與圖1中的字母對應(yīng))

查看答案和解析>>

同步練習(xí)冊答案