【題目】若關(guān)于x的方程x2mx+n0沒有實數(shù)解,則拋物線yx2mx+nx軸的交點有( 。

A.2B.1C.0D.不能確定

【答案】C

【解析】

根據(jù)拋物線與x軸的交點和一元二次方程的解之間的關(guān)系進行判斷.

解:x2mx+n0沒有實數(shù)解,則拋物線yx2mx+nx軸沒有交點,

故選:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過A﹣3,0),B10),C0,3)三點,其頂點為D,對稱軸是直線llx軸交于點H

1)求該拋物線的解析式;

2)若點P是該拋物線對稱軸l上的一個動點,求PBC周長的最小值;

3)如圖(2),若E是線段AD上的一個動點( EAD不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設點E的橫坐標為m,ADF的面積為S

①求Sm的函數(shù)關(guān)系式;

S是否存在最大值?若存在,求出最大值及此時點E的坐標; 若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某景點的門票價格如表:

購票人數(shù)/人

1~50

51~100

100以上

每人門票價/元

12

10

8

某校七年級(1)、(2)兩班計劃去游覽該景點,其中(1)班人數(shù)少于50人,(2)班人數(shù)多于50人且少于100人,如果兩班都以班為單位單獨購票,則一共支付1118元;如果兩班聯(lián)合起來作為一個團體購票,則只需花費816元.
(1)兩個班各有多少名學生?
(2)團體購票與單獨購票相比較,兩個班各節(jié)約了多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,然后解答后面的問題. 我們知道方程2x+3y=12有無數(shù)組解,但在實際生活中我們往往只需要求出其正整數(shù)解.例:由2x+3y=12,得 ,(x、y為正整數(shù))∴ 則有0<x<6.又 為正整數(shù),則 為正整數(shù).
由2與3互質(zhì),可知:x為3的倍數(shù),從而x=3,代入
∴2x+3y=12的正整數(shù)解為
問題:
(1)請你寫出方程2x+y=5的一組正整數(shù)解:
(2)若 為自然數(shù),則滿足條件的x值有個;
A.2
B.3
C.4
D.5
(3)七年級某班為了獎勵學習進步的學生,購買了單價為3元的筆記本與單價為5元的鋼筆兩種獎品,共花費35元,問有幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段AB經(jīng)過平移得到線段,其中點AB的對應點分別為點, ,這四個點都在格點上。若線段AB上有一個點Pa,b),則點P上的對應點的坐標為

A. a+2,b﹣3 B. a+2,b+3 C. a﹣2,b﹣3 D. a﹣2,b+3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(3x2y﹣2x+1)(﹣2xy)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】13位同學參加學校組織的才藝表演比賽,已知他們所得的分數(shù)互不相同,共設7個獲獎名額,某同學知道自己的比賽分數(shù)后,要判斷自己能否獲獎,在這13名同學成績的統(tǒng)計量中只需知道一個量,它是____.(眾數(shù)”“方差”“中位數(shù)平均數(shù)”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于x的一元二次方程2x2-4x+m-1=0有兩個相等的實數(shù)根,則m的值為________。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系xoy中,一次函數(shù)y1=k1x+b的圖象與反比例函數(shù)y2=的圖象交于A(一1,6)、B(a,一2)兩點.

(1)求一次函數(shù)的解析式;

(2)連接OA、0B,求ΔAOB的面積;

(3)當x滿足_______________時, 0<y1y2

查看答案和解析>>

同步練習冊答案