【答案】
分析:(1)求證AD是小⊙O的切線,證OA⊥AD即可.由于BC是大⊙O的切線,可得OB⊥BC,而BC∥AD,即可證得OA⊥AD;
(2)大致有四種角:
①與α的度數(shù)相等;由于BH∥FM,則∠GBA=∠FOB=α,而∠GBA、∠GDH是等角的余角,因此∠GDH=α.所以∠GBA=∠GDH=α;
②度數(shù)為90°-α的角;在Rt△ABG中,∠AGB=90°-α,而∠DGH和∠BGA是對頂角,故∠DGH=90°-α;由于DG∥BC,則同位角∠DGH=∠CBG;在平行四邊形CBGD中,對角∠CBG=∠D;故度數(shù)為90°-α的角有:∠AGB=∠DGH=∠CBG=∠D=90°-α;
③度數(shù)為90°+α的角;∠BGD是△ABG的外角,則∠C=∠BGD=90°+α;
④度數(shù)為180°-α的角;由于∠FOB和∠BOM互補,則∠BOM=180°-α;
(3)由(2)知:四邊形BGDC是平行四邊形,則BC=DG=6,而∠GDH=α=30°,通過解直角三角形即可求出DH的長.
解答:(1)證明:∵BC是大⊙O的切線,
∴∠CBO=90°.
∵BC∥AD,
∴∠BAD=90°即OA⊥AD.
又∵點A在小⊙O上,
∴AD是小⊙O的切線.
(2)解:(答案不唯一)所寫結(jié)果分層如下:
A層次:①∠BOM=180°-α;②∠GBO=α;③∠BGA=90°-α;④∠DGH=90°-α;⑤∠CBG=90°-α;⑥∠BGD=90°+α;
B層次:⑦∠GDH=α;⑧∠CDA=90-α;⑨∠C=90°+α
相應(yīng)的說明過程如下:
A層次:選③
理由:∵BH∥FM,∴∠GBO=∠FOB=α.
由(1)可知,∠BAG=90°,∴∠BGA=90°-α.
B層次:選⑨
理由:∵BH∥FM,∴∠GBO=∠FOB=α.
由(1)可知,∠BAG=90°,
∴∠BGA=90°-α.
∵CD∥BG,∴∠CDG=∠BGA=90°-α.
∵CB∥AD,
∴∠C=180°-∠CDG=180°-(90°-α)=90°+α.
(3)解:∵CD∥BG,CB∥DG,
∴四邊形BGDC是平行四邊形.
∴DG=BC=6,
由(2)⑦得:∠GDH=α=30°,
又∠DGH=90°-∠GDH=90°-30°=60°,
∵∠DHG=90°,
∴DH=DG•sin∠DGH=sin60°×6=3
.
點評:此題主要考查的是學生對基礎(chǔ)知識的掌握,涉及的知識點有:切線的判定和性質(zhì)、平行四邊形的性質(zhì)、平行線的性質(zhì)、直角三角形的性質(zhì)以及解直角三角形的應(yīng)用等.