(2008•南通)已知:如圖,M是的中點,過點M的弦MN交AB于點C,設(shè)⊙O的半徑為4cm,MN=cm.
(1)求圓心O到弦MN的距離;
(2)求∠ACM的度數(shù).

【答案】分析:(1)連接OM,作OD⊥MN于D.根據(jù)垂徑定理和勾股定理求解;
(2)根據(jù)(1)中的直角三角形的邊求得∠M的度數(shù).再根據(jù)垂徑定理的推論發(fā)現(xiàn)OM⊥AB,即可解決問題.
解答:解:(1)連接OM,
∵點M是的中點,
∴OM⊥AB,
過點O作OD⊥MN于點D,
由垂徑定理,得MD=MN=2,
在Rt△ODM中,OM=4,MD=2,
∴OD==2,
故圓心O到弦MN的距離為2cm;

(2)cos∠OMD=
∴∠OMD=30°,
∵M為弧AB中點,OM過O,
∴AB⊥OM,
∴∠MPC=90°,
∴∠ACM=60°.
點評:此題要能夠熟練運用垂徑定理和勾股定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2008•南通)已知點A(-2,-c)向右平移8個單位得到點A′,A與A′兩點均在拋物線y=ax2+bx+c上,且這條拋物線與y軸的交點的縱坐標(biāo)為-6,求這條拋物線的頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2008•南通)已知雙曲線y=與直線y=相交于A、B兩點.第一象限上的點M(m,n)(在A點左側(cè))是雙曲線y=上的動點.過點B作BD∥y軸交x軸于點D.過N(0,-n)作NC∥x軸交雙曲線y=于點E,交BD于點C.
(1)若點D坐標(biāo)是(-8,0),求A、B兩點坐標(biāo)及k的值;
(2)若B是CD的中點,四邊形OBCE的面積為4,求直線CM的解析式;
(3)設(shè)直線AM、BM分別與y軸相交于P、Q兩點,且MA=pMP,MB=qMQ,求p-q的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(16)(解析版) 題型:解答題

(2008•南通)已知雙曲線y=與直線y=相交于A、B兩點.第一象限上的點M(m,n)(在A點左側(cè))是雙曲線y=上的動點.過點B作BD∥y軸交x軸于點D.過N(0,-n)作NC∥x軸交雙曲線y=于點E,交BD于點C.
(1)若點D坐標(biāo)是(-8,0),求A、B兩點坐標(biāo)及k的值;
(2)若B是CD的中點,四邊形OBCE的面積為4,求直線CM的解析式;
(3)設(shè)直線AM、BM分別與y軸相交于P、Q兩點,且MA=pMP,MB=qMQ,求p-q的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學(xué)試卷(靖江鎮(zhèn)中 董巨江等)(解析版) 題型:解答題

(2008•南通)已知雙曲線y=與直線y=相交于A、B兩點.第一象限上的點M(m,n)(在A點左側(cè))是雙曲線y=上的動點.過點B作BD∥y軸交x軸于點D.過N(0,-n)作NC∥x軸交雙曲線y=于點E,交BD于點C.
(1)若點D坐標(biāo)是(-8,0),求A、B兩點坐標(biāo)及k的值;
(2)若B是CD的中點,四邊形OBCE的面積為4,求直線CM的解析式;
(3)設(shè)直線AM、BM分別與y軸相交于P、Q兩點,且MA=pMP,MB=qMQ,求p-q的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年江蘇省南通市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•南通)已知點A(-2,-c)向右平移8個單位得到點A′,A與A′兩點均在拋物線y=ax2+bx+c上,且這條拋物線與y軸的交點的縱坐標(biāo)為-6,求這條拋物線的頂點坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案