如圖,在正方形ABCD中,點E是AD的中點,連接BE、CE,點F是CE的中點,連接DF、BF,點M是BF上一點且=,過點M做MN⊥BC于點N,連接FN.下列結論中:
①BE=CE;②∠BEF=∠DFE;③MN=AB;④=
其中正確結論的個數(shù)是( )

A.1個
B.2個
C.3個
D.4個
【答案】分析:設AE=a,則DE=a,AB=BC=CD=DA=2a.在正方形ABCD中,根據勾股定理可得BE=CE,故①正確;過點F作FG⊥AD于G,F(xiàn)G交BC于H.由F是CE的中點,得出EG=DG=DE=a,GF=CD=a.再根據正切函數(shù)的定義可得tan∠AEB=tan∠GDF=2,則∠AEB=∠GDF,BE∥DF,從而有∠BEF=∠DFE,故②正確;由△EFG≌△CFH,得出FG=FH=a,由MN∥FH,根據平行線分線段成比例定理,可得MN=FH=a,則MN=AB,故③正確;分別計算S△FMN與S四邊形FEBN,即可得出==,故④錯誤.
解答:解:∵四邊形ABCD是正方形,
∴∠A=∠ABC=∠BCD=∠CDA=90°,AB=BC=CD=DA,AD∥BC.
設AE=a,則DE=a,AB=BC=CD=DA=2a.
在△ABE中,由勾股定理,得BE=a,
在△CDE中,由勾股定理,得CE=a,
∴BE=CE,故①正確;
過點F作FG⊥AD于G,F(xiàn)G交BC于H.
∵AD∥BC,F(xiàn)G⊥AD,∴GH⊥BC.
∵FG∥CD,點F是CE的中點,
∴EG=DG=DE=a,GF=CD=a.
在直角△ABE中,∵tan∠AEB===2,
在直角△GFD中,∵tan∠GDF===2,
∴tan∠AEB=tan∠GDF,
∵0°<∠AEB<90°,0°<∠GDF<90°,
∴∠AEB=∠GDF,
∴BE∥DF,
∴∠BEF=∠DFE,故②正確;
易證△EFG≌△CFH,則FG=FH=a,EG=CH=a.
∵GH∥CD,GD∥HC,∠CDA=90°,
∴四邊形CDGH是矩形,
∴CH=DG=a,
∴BH=BC-CH=a.
∵MN⊥BC,GH⊥BC,
∴MN∥FH,
===,
∴MN=FH=a,BN=BH=a,
∴MN=AB,故③正確;
∵BN=CH=a,
∴NH=BC-BN-CH=a,
∴S△FMN=MN•NH=×a×a=a2,
S四邊形FEBN=S正方形ABCD-S△ABE-S△CDE-S△CNF=4a2-•2a•a-•2a•a-a•a=a2
==,故④錯誤.
故選C.
點評:本題主要考查了正方形的性質,全等三角形、相似三角形的判定與性質,平行線分線段成比例定理,作出輔助線是解題的關鍵,設輔助未知數(shù)AE=a可使問題簡化.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖:在正方形網格上有△ABC,△DEF,說明這兩個三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線精英家教網,交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度;
(3)若以點O,D,E,C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長.

查看答案和解析>>

同步練習冊答案