【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點A落在AB上的點D處;再將邊BC沿CF翻折,使點B落在CD的延長線上的點B′處,兩條折痕與斜邊AB分別交于點E,F,則線段B′F的長為( )
A.
B.
C.
D.
【答案】B
【解析】解:根據折疊的性質可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,
∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,
∵∠ACB=90°,
∴∠ECF=45°,
∴△ECF是等腰直角三角形,
∴EF=CE,∠EFC=45°,
∴∠BFC=∠B′FC=135°,
∴∠B′FD=90°,
∵S△ABC= ACBC= ABCE,
∴ACBC=ABCE,
∵根據勾股定理求得AB=5,
∴CE= ,
∴EF= ,ED=AE= = ,
∴DF=EF﹣ED= ,
∴B′F= = .
所以答案是:B.
【考點精析】掌握翻折變換(折疊問題)是解答本題的根本,需要知道折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.
科目:初中數學 來源: 題型:
【題目】如圖,CD∥AB,點O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°.
(1)求∠DOE的度數;
(2)OF平分∠AOD嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線,直線與直線、分別相交于點、.
(1)如圖1,若,求,的度數;
(2)若點是平面內的一個動點,連接、,探索、、之間的數量關系;
①當點在圖2的位置時,請寫出、、之間的數量關系并證明;
②當點在圖3的位置時,請寫出、、之間的數量關系并證明;
③當點在圖4的位置時,請直接寫出、、之間的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A,B,C,D,E,F是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段.在連接兩點所得的所有線段中任取一條線段,取到長度為 的線段的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結論:
①2a+b=0;
②abc>0;
③方程ax2+bx+c=3有兩個相等的實數根;
④拋物線與x軸的另一個交點是(﹣1,0);
⑤當1<x<4時,有y2<y1 ,
其中正確的是( )
A.①②③
B.①③④
C.①③⑤
D.②④⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】亞健康是時下社會熱門話題,進行體育鍛煉是遠離亞健康的一種重要方式,為了解某市初中學生每天進行體育鍛煉的時間情況,隨機抽樣調查了100名涌中學生,根據調查結果得到如圖所示的統(tǒng)計圖表.
類別 | 時間t(小時) | 人數 |
A | t≤0.5 | 5 |
B | 0.5<t≤1 | 20 |
C | 1<t≤1.5 | a |
D | 1.5<t≤2 | 30 |
E | t>2 | 10 |
請根據圖表信息解答下列問題:
(1)a=;
(2)補全條形統(tǒng)計圖;
(3)據了解該市大約有30萬名初中學生,請估計該市初中學生每天進行體育鍛煉時間在1小時以上的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC=5,cos∠ABC= ,將△ABC繞點C順時針旋轉,得到△A1B1C.
(1)如圖①,當點B1在線段BA延長線上時.①求證:BB1∥CA1;②求△AB1C的面積;
(2)如圖②,點E是BC邊的中點,點F為線段AB上的動點,在△ABC繞點C順時針旋轉過程中,點F的對應點是F1 , 求線段EF1長度的最大值與最小值的差.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在中,.在邊上取一點,以為頂點、為一條邊作,點在的延長線上,.
(1)如圖(1),當點在邊上時,請說明①;②成立的理由.
(2)如圖(2),當點在的延長線上時,試判斷與是否相等?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com