如圖,把圖中的△ABC經(jīng)過一定的變換得到△A′B′C′,如果圖中△ABC上的點P的坐標為(a,b),那么它的對應點P′的坐標為( )

A.(a-2,b)
B.(a+2,b)
C.(-a-2,-b)
D.(a+2,-b)
【答案】分析:先根據(jù)圖形確定出對稱中心,然后根據(jù)中點公式列式計算即可得解.
解答:解:由圖可知,△ABC與△A′B′C′關于點(-1,0)成中心對稱,
設點P′的坐標為(x,y),
所以,=-1,=0,
解得x=-a-2,y=-b,
所以,P′(-a-2,-b).
故選C.
點評:本題考查了坐標與圖形變化-旋轉,準確識圖,觀察出兩三角形成中心對稱,對稱中心是(-1,0)是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,把長方形紙片ABCD沿EF折疊,使得點D與點B重合,點C落在點C′的位置上.
(1)試說明△BEF是等腰三角形;
(2)圖形中是否存在成中心對稱的兩個圖形?如果存在,請指出是哪兩個圖形(不必說明理由,圖中實線、虛線一樣看待);
(3)若AB=4,AD=8,求折痕EF的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

【閱讀理解】:若一條直線l把一個圖形分成面積相等的兩個圖形,則稱這樣的直線l叫做這個圖形的等積直線.如圖①,直線l經(jīng)過三角形ABC的頂點A和邊BC的中點N,易知直線l將△ABC分成兩個面積相等的圖形,則稱直線l為△ABC的等積直線.

根據(jù)上述內容解決以下問題:
(1)如圖②,在矩形ABCD中,直線l經(jīng)過AD、BC邊的中點M、N,請你判斷直線l是否為該矩形的等積直線.
 (填“是”或“否”)并在圖②中再畫出一條該矩形的等積直線;(不必寫作法,保留作圖痕跡)
(2)如圖③,在梯形ABCD中,直線l經(jīng)過AD、BC邊的中點M、N,請你判斷直線l是否為該梯形的等積直線.
;(填“是”或“否”)
(3)在圖③中,過MN的中點O任做一條直線PQ分別交AD,BC于點P,Q(如圖④),猜想PQ是否為該梯形的等積直線,若“是”請證明,若“不是”請說明理由;
【探索應用】:
李大爺家有一塊五邊形的土地如圖⑤,已知∠A、∠B、∠C都是直角,AB∥CD,BC∥AE,現(xiàn)決定畫一條線把五邊形土地分為兩
塊,其中一塊地用來改種核桃樹,要求兩塊地面積相同,請你幫李大爺畫出這條線,并判斷這樣的直線有多少條(保留作圖痕跡,不必說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:044

如圖1所示,一張三角形紙片ABC,∠ACB=90°,AC=8,BC=6.沿斜邊AB的中線CD把這張紙片剪成兩個三角形(如圖2所示).將紙片沿直線(AB)方向平移(點始終在同一直線上),當點于點B重合時,停止平移.在平移過程中,交于點E,分別交于點F、P.

(1) 當平移到如圖3所示的位置時,猜想圖中的的數(shù)量關系,并證明你的猜想;

(2) 設平移距離,重疊部分面積為,請寫出的函數(shù)關系式,以及自變量的取值范圍;

(3) 對于(2)中的結論是否存在這樣的的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖1中的△ABC是直角三角形,∠C=90°.現(xiàn)將△ABC補成矩形,使△ABC的兩個頂點為矩形一邊的兩個端點,第三個頂點落在矩形這一邊的對邊上,那么符合條件的矩形可以畫出兩個,如圖2所示:

(1)設圖2中的矩形ACBD和矩形AEFB的面積分別為S1和S2,則S1______S2(填“>”,“=”,“<”)
(2)如圖3中的△ABC是銳角三角形,且三邊滿足BC>AC>AB,按短文中的要求把它補成矩形,那么
符合要求的矩形可以畫出______個,并在圖3中把符合要求的矩形畫出來.
(3)在圖3中所畫出的矩形中,它們的面積之間具有怎樣的關系?并說明你的理由;
(4)猜想圖3中所畫的矩形的周長之間的大小關系,不必證明.

查看答案和解析>>

科目:初中數(shù)學 來源:山東省模擬題 題型:解答題

如圖1中的△ABC是直角三角形,∠C=90°,現(xiàn)將△ABC補成矩形,使△ABC的兩個頂點為矩形一邊的兩個端點,第三個頂點落在矩形這一邊的對邊上,那么符合條件的矩形可以畫出兩個,如圖2所示。
(1)設圖2中的矩形ACBD和矩形AEFB的面積分別為S1和S2,則S1_______S2(填“>”,“=”或“<;
(2)如圖3中的△ABC是銳角三角形,且三邊滿足 BC>AC>AB,按短文中的要求把它補成矩形,那么符合要求的矩形可以畫出________個,并在圖3中把符合要求的矩形畫出來;
(3)在圖3中所畫出的矩形中,它們的面積之間具有怎樣的關系?并說明你的理由;
(4)猜想圖3中所畫的矩形的周長之間的大小關系,不必證明。

查看答案和解析>>

同步練習冊答案