把(t2+2t)2+2(t2+2t)+1分解因式,并求當(dāng)t=-3時(shí)的值.
原式=(t2+2t+1)2=(t+1)4,
把t=-3代入上式得:(t+1)4=(-3+1)4=16.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

換元法是一種將復(fù)雜問題變得簡(jiǎn)單的一種方法,其主要的思想是,把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它.如:
解方程:x4-2x2-8=0
解:令t=x2,則t≥0原方程可化為:t2-2t-8=0
解得:t1=4,t2=-2
因?yàn)閠2=-2<0和t≥0不相符,∴t1=4,即x2=4,∴x1=2,x2=-2
請(qǐng)認(rèn)真閱讀上述題目,并解方程:(
2x-1
x
)4+(
2x-1
x
)2=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

小明用下面的方法求出方程3
x
-5=0
的解,請(qǐng)你仿照他的方法求出下面另外兩個(gè)方程的解,并把你的解答過程填寫在下面的表格中.
方程 換元法得新方程 解新方程 檢驗(yàn) 求原方程的解
3
x
-5=0
x
=t
,
則3t-5=0
t=
5
3
t=
5
3
>0
x
=
5
3

x=
25
9
x-2
x
-3=0
x
=t,
則t2-2t-3=0
x
=t,
則t2-2t-3=0
t1=3,t2=-1,
t1=3,t2=-1,
t1=3>0,t2=-1<0,
t1=3>0,t2=-1<0,
x
=3,
∴x=9.
x
=3,
∴x=9.
x+
x-2
-2=2
x-2
=t,
則t2+t=2
x-2
=t,
則t2+t=2
t1=-2,t2=1
t1=-2,t2=1
t1=-2<0,t2=1>0
t1=-2<0,t2=1>0
x-2
=1,
∴x=3.
x-2
=1,
∴x=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

把(t2+2t)2+2(t2+2t)+1分解因式,并求當(dāng)t=-3時(shí)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

把(t2+2t)2+2(t2+2t)+1分解因式,并求當(dāng)t=-3時(shí)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案