【題目】如圖,點(diǎn)P、Q是邊長(zhǎng)為2的菱形ABCD中兩邊BC和CD的中點(diǎn),K是BD上一動(dòng)點(diǎn),則KP+KQ的最小值為________.
【答案】2
【解析】分析:先作點(diǎn)P關(guān)于BD的對(duì)稱(chēng)點(diǎn)P′,連接P′Q交BD于K,此時(shí)PK+QK有最小值.然后證明四邊形BCQP′為平行四邊形,即可求出PK+QK=P′Q=BC=2.
詳解:
作點(diǎn)P關(guān)于BD的對(duì)稱(chēng)點(diǎn)P′,連接P′Q交BD于K,此時(shí)KP+KQ有最小值,最小值為P′Q的長(zhǎng).
∵菱形ABCD關(guān)于BD對(duì)稱(chēng),P是BC邊上的中點(diǎn),
∴P′是AB的中點(diǎn),
又∵Q是CD邊上的中點(diǎn),
∴BP′∥CQ,BP′=CQ,
∴四邊形BCQP′是平行四邊形,
∴P′Q=BC=2,
∴PK+KQ=P′Q=2,即KP+KQ的最小值為2,
故答案為:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將形狀、大小完全相同的“”和線段按照一定規(guī)律擺成下列圖形.第1幅圖形中“”的個(gè)數(shù)為,第2幅圖形中“”的個(gè)數(shù)為,第3幅圖形中“”的個(gè)數(shù)為,……,以此類(lèi)推,解決以下問(wèn)題:
(1)直接寫(xiě)出 , (用含n的代數(shù)式表示);
(2)猜想是否存在某幅圖中“”的個(gè)數(shù)為2018,若存在,直接寫(xiě)出n的值;若不存在,則直接寫(xiě)出2018至少再加上多少后所得的數(shù)正好是某幅圖中黑點(diǎn)的個(gè)數(shù),并直接寫(xiě)出此時(shí)n的值;
(3)求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖中的虛線網(wǎng)格是等邊三角形網(wǎng)格,它的每一個(gè)小三角形都是邊長(zhǎng)為1的等邊三角形.
(1)邊長(zhǎng)為1的等邊三角形的高=____;
(2)圖①中的ABCD的對(duì)角線AC的長(zhǎng)=____;
(3)圖②中的四邊形EFGH的面積=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年,某市政府的一項(xiàng)實(shí)事工程就是由政府投入1 000萬(wàn)元資金,對(duì)城區(qū)4萬(wàn)戶家庭的老式水龍頭和13升抽水馬桶進(jìn)行免費(fèi)改造,某社區(qū)為配合政府完成該項(xiàng)工作,對(duì)社區(qū)內(nèi)1 200戶家庭中的120戶進(jìn)行了隨機(jī)抽樣調(diào)查,并匯總成下表:
改造情況 | 均不改造 | ||||||
改造水龍頭 | 改造馬桶 | ||||||
1個(gè) | 2個(gè) | 3個(gè) | 4個(gè) | 1個(gè) | 2個(gè) | ||
戶數(shù) | 20 | 31 | 28 | 21 | 12 | 69 | 2 |
(1)試估計(jì)該社區(qū)需要對(duì)水龍頭或馬桶進(jìn)行改造的家庭共有___戶;
(2)改造后,一個(gè)水龍頭一年大概可節(jié)約5噸水,一個(gè)馬桶一年大約可節(jié)約15噸水,試估計(jì)該社區(qū)一年共可節(jié)約多少噸水?
(3)在抽樣的120戶家庭中,既要改造水龍頭又要改造馬桶的家庭共有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填寫(xiě)推理理由
如圖,已知AD⊥BC于D,EF⊥BC于F,AD平分∠BAC.將∠E=∠1的過(guò)程填寫(xiě)完整.
解:解:∵AD⊥BC, EF⊥BC( 已知 )
∴∠ADC=∠EFC= 90°( 垂直的意義 )
∴AD//EF
∴∠1= ()
∠E= ()
又∵AD平分∠BAC(已知 )
∴ =
∴∠1=∠E.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)對(duì)全校學(xué)生進(jìn)行文明禮儀知識(shí)測(cè)試,為了解測(cè)試結(jié)果,隨機(jī)抽取部分學(xué)生的成績(jī)進(jìn)行分析,將成績(jī)分為三個(gè)等級(jí):不合格、一般、優(yōu)秀,并繪制成如圖兩幅統(tǒng)計(jì)圖(不完整).
請(qǐng)你根據(jù)圖中所給的信息解答下列問(wèn)題:
(1)這次測(cè)試,一共抽取了名學(xué)生;
(2)請(qǐng)將以上兩幅統(tǒng)計(jì)圖補(bǔ)充完整;(注:扇形圖補(bǔ)百分比,條形圖補(bǔ)“優(yōu)秀”人數(shù)與高度);
(3)若“一般”和“優(yōu)秀”均被視為達(dá)標(biāo)成績(jī),該校學(xué)生有1200人,請(qǐng)你估計(jì)此次測(cè)試中,全校達(dá)標(biāo)的學(xué)生有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),B在x軸上,四邊形OACB為平行四邊形,且∠AOB=60°,反比例函數(shù)(k>0)在第一象限內(nèi)過(guò)點(diǎn)A,且與BC交于點(diǎn)F.(1)若OA=10,求反比例函數(shù)的解析式;
(2)若F為BC的中點(diǎn),且S△AOF=24,求OA長(zhǎng)及點(diǎn)C坐標(biāo);
(3)在(2)的條件下,過(guò)點(diǎn)F作EF∥OB交OA于點(diǎn)E(如圖2),若點(diǎn)P是直線EF上一個(gè)動(dòng)點(diǎn),連結(jié),PA,PO,問(wèn)是否存在點(diǎn)P,使得以P,A,O三點(diǎn)構(gòu)成的三角形是直角三角形?若存在,請(qǐng)指出這樣的P點(diǎn)有幾個(gè),并直接寫(xiě)出其中二個(gè)P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明了理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)全體學(xué)生在5名教師的帶領(lǐng)下去公園秋游,公園的門(mén)票為每人30元.現(xiàn)有兩種優(yōu)惠方案,甲方案:帶隊(duì)老師免費(fèi),學(xué)生按8折收費(fèi);乙方案:師生都按7.5折收費(fèi).
(1)若有n名學(xué)生,用含n的代數(shù)式表示兩種優(yōu)惠方案各需多少元?
(2)當(dāng)n=70時(shí),采用哪種方案更優(yōu)惠?
(3)當(dāng)n=100時(shí),采用哪種方案更優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為疏導(dǎo)國(guó)慶假期交通,一輛交通巡邏車(chē)在南北公路上巡視.某天早上從地出發(fā),中午到達(dá)地,行駛記錄如下(規(guī)定向北為正方向,單位:千米):
,,,,,,.
請(qǐng)你解答下列問(wèn)題:
(1)地在地的什么方向?與地相距多遠(yuǎn)?
(2)巡邏車(chē)在巡邏中,離開(kāi)地最遠(yuǎn)多少千米?
(3)若巡邏車(chē)行駛每千米耗油升,這半天共耗油多少升?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com