已知直線l:y=-3x+2,現(xiàn)有四個命題:
A.點P(1,-1)在直線l上
B.若直線l與x軸,y軸分別交于A、B兩點,則AB=
C.若點M(,1),N(a,b)都在直線l上且a>,則b>1
D.若點Q到兩坐標軸的距離相等,且點Q在l上,則點Q在第一或第四象限.
其中錯誤的命題是________.
科目:初中數(shù)學 來源: 題型:閱讀理解
閱讀理解:對于任意正實數(shù)a、b,∵(-)2≥0,∴a-2+b≥0,∴a+b≥2,只有當a=b時,等號成立.
結論:在a+b≥2(a、b均為正實數(shù))中,若ab為定值p,則a+b≥2,只有當a=b時,a+b有最小值2. 根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當m= 時,m+有最小值 ;
若m>0,只有當m= 時,2m+有最小值 .
(2)如圖,已知直線L1:y=x+1與x軸交于點A,過點A的另一直線L2與雙曲線y=
(x>0)相交于點B(2,m),求直線L2的解析式.
(3)在(2)的條件下,若點C為雙曲線上任意一點,作CD∥y軸交直線L1于點D,試
求當線段CD最短時,點A、B、C、D圍成的四邊形面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:閱讀理解
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012學年江蘇省江陰華士片八年級下學期期中考試數(shù)學卷(帶解析) 題型:解答題
閱讀理解:對于任意正實數(shù)a、b,∵(-)2≥0,∴a-2+b≥0,∴a+b≥2,只有當a=b時,等號成立.
結論:在a+b≥2(a、b均為正實數(shù))中,若ab為定值p,則a+b≥2,只有當a=b時,a+b有最小值2. 根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當m= 時,m+有最小值 ;
若m>0,只有當m= 時,2m+有最小值 .
(2)如圖,已知直線L1:y=x+1與x軸交于點A,過點A的另一直線L2與雙曲線y=
(x>0)相交于點B(2,m),求直線L2的解析式.
(3)在(2)的條件下,若點C為雙曲線上任意一點,作CD∥y軸交直線L1于點D,試
求當線段CD最短時,點A、B、C、D圍成的四邊形面積.
查看答案和解析>>
科目:初中數(shù)學 來源:2012-2013學年江蘇省無錫市九年級下學期第一次模擬考試數(shù)學試卷(解析版) 題型:選擇題
如圖,已知直線l:y=x,過點A(0,1)作y軸的垂線交直線l于點B,過點B作直線l的垂線交y軸于點A1;過點A1作y軸的垂線交直線l于點B1,過點B1作直線l的垂線交y軸于點A2; ;按此作法繼續(xù)下去,則點A4的坐標為 ( )
A.(0,64) B.(0,128) C.(0,256) D.(0,512)
查看答案和解析>>
科目:初中數(shù)學 來源:2013屆江蘇省江陰華士片八年級下學期期中考試數(shù)學卷(解析版) 題型:解答題
閱讀理解:對于任意正實數(shù)a、b,∵(-)2≥0,∴a-2+b≥0,∴a+b≥2,只有當a=b時,等號成立.
結論:在a+b≥2(a、b均為正實數(shù))中,若ab為定值p,則a+b≥2,只有當a=b時,a+b有最小值2. 根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當m= 時,m+有最小值 ;
若m>0,只有當m= 時,2m+有最小值 .
(2)如圖,已知直線L1:y=x+1與x軸交于點A,過點A的另一直線L2與雙曲線y=
(x>0)相交于點B(2,m),求直線L2的解析式.
(3)在(2)的條件下,若點C為雙曲線上任意一點,作CD∥y軸交直線L1于點D,試
求當線段CD最短時,點A、B、C、D圍成的四邊形面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com