【題目】如圖中的折線ABC表示某汽車的耗油量y(L/km)與速度x(km/h)之間的函數(shù)關(guān)系(30≤x≤120).已知線段BC表示的函數(shù)關(guān)系中,該汽車的速度每增加1km/h,耗油量增加0.002L/km

1)當30≤x≤120時,求yx之間的函數(shù)表達式;

2)該汽車的速度是多少時,耗油量最低?最低是多少.

【答案】1y0.002x0.06;(2)速度是80km/h時,該汽車的耗油量最低,最低是0.1L/km

【解析】

1)分別設(shè)出AB段和BC段的一次函數(shù)解析式,利用待定系數(shù)法即可解決問題;
2)觀察圖形發(fā)現(xiàn),兩線段的交點即為最低點,因此求兩函數(shù)解析式組成的方程組的解即可.

1)設(shè)AB的解析式為:ykxb,

(30,0.15)(60,0.12)代入ykxb中得:

,解得,

AB段一次函數(shù)的解析式為:y=﹣0.001x0.18,

設(shè)BC的解析式為:ymxn,

(90,0.12)(100,0.14)代入ymxn中得:

,解得,

BC段一次函數(shù)的解析式為:y0.002x0.06;

2)根據(jù)題意得

,解得,

答:速度是80km/h時,該汽車的耗油量最低,最低是0.1L/km

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)圖中給出的數(shù)軸解答問題:

1)請你根據(jù)圖中AB兩點的位置,分別寫出他們所表示的有理數(shù)為      

2)觀察數(shù)軸,與點A的距離為4的點表示的數(shù)是      

3)如果將數(shù)軸折疊,使得點A與表示﹣2的點重合,則點B與表示數(shù)      的點重合;

4)如果數(shù)軸上MN兩點之間的距離為2020MN的左側(cè)),且M,N兩點經(jīng)過(3)中折疊后互相重合,則M,N兩點所表示的數(shù)分別是    ,    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1)(﹣81+(﹣29

2)﹣7+136+20

31+(﹣)﹣(﹣)﹣

4)﹣0.5﹣(﹣3+2.75﹣(+7

5)(+16+(﹣3)﹣|8|+|12|﹣(﹣5

6)(﹣0.25)×(﹣2)×(﹣)×(+0.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下面給出的數(shù)軸,解答下面的問題:

⑴ 請你根據(jù)圖中AB兩點的位置,分別寫出它們所表示的有理數(shù)A B

⑵ 觀察數(shù)軸,與點A的距離為4的點表示的數(shù)是: ;

⑶ 若將數(shù)軸折疊,使得A點與-3表示的點重合,則B點與數(shù) 表示的點重合;

⑷ 若數(shù)軸上M、N兩點之間的距離為2018(MN的左側(cè)),且M、N兩點經(jīng)過(3)中折疊后互相重合,則M、N兩點表示的數(shù)分別是:M: N:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD,ECD上一點,連接BE,ADBE,連接BD,BD平分∠ABE,BF平分∠ABCCD于點F, ABC=100°,∠DBF=14°,ADC的度數(shù)為_______°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,ECB延長線上一個動點,F、G分別為AE、BC的中點,FGED相交于點H

1)求證:HEHG;

2)如圖2,當BEAB時,過點AAPDE于點P,連接BP,求PQPB的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某檢修小組乘一輛檢修車沿一段東西方向鐵路檢修,規(guī)定向東走為正,向西走為負,小組的出發(fā)地記為M,某天檢修完畢時,行走記錄(單位:千米)如下:

+12,-5,-9,+10,-4,+15-9,+3-6,-3,-7

(1)問收工時,檢修小組距出發(fā)地M有多遠?在東側(cè)還是西側(cè)?

(2)若檢修車每千米耗油0.2升,求從出發(fā)到收工時檢修車共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖AMBN,CBN上一點, BD平分∠ABN且過AC的中點O,交AM于點D,DEBD,交BN于點E

1)求證:ADO≌△CBO

2)求證:四邊形ABCD是菱形.

3)若DE = AB = 2,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E,F分別為邊AD,BC上的點,AE=CF,對角線AC平分∠ECF

1)求證:四邊形AECF為菱形.

2)已知AB=4BC=8,求菱形AECF的面積.

查看答案和解析>>

同步練習冊答案