【題目】(定義)從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.
(1)如圖1,△ABC中,∠A=40°,∠B=60°,CD平分∠ACB.求證:CD為△ABC的完美分割線;
(2)在△ABC中,CD是△ABC的完美分割線,其中△ACD為等腰三角形,設(shè)∠A=x°,∠B=y°,則y與x之間的關(guān)系式為_____________________________;
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長(zhǎng).
【答案】(1)詳見解析;(2)3x+y=180或3x+2y=180;(3)CD=
【解析】
(1)據(jù)完美分割線①△ABC不是等腰三角形,②△ACD等三角形,③△BDC∽△BCA即可
(2)分三種情形討論即可①如圖2,當(dāng)AD=CD時(shí),②如圖3中,當(dāng)AD=AC時(shí),③如圖4中,當(dāng)AC=CD時(shí),分別求出x,y的關(guān)系即可.
(3)由題意可知,AC=AD=2;然后運(yùn)用相似三角形的性質(zhì)和判定以及勾股定理求解即可.
(1)證明:∵ ∠A=40°,∠B=60°
∴∠ACB=80°
∴△ABC不是等腰三角形
∵CD平分∠ACB
∴∠ACD=∠DCB=40°
∴△ACD是等腰三角形
∵∠A=∠DCB=40° ∠B=∠B
∴ △BCD∽△BAC
∴CD為△ABC的完美分割線
(2)①當(dāng)AD=CD時(shí),如圖
∴∠ACD=∠A=x
∴∠CDA=∠ACD+∠A=2x
又∵△BCD∽△BAC
∴∠DCB=∠A=x
∴x+2x+y=180°,即3x+y=180
②當(dāng)AD=AC時(shí),如圖
∴
又∵△BCD∽△BAC
∴∠DCB=∠A=x
∴x+y=,即3x+2y=180°
③當(dāng)AD=AC時(shí),如圖
,矛盾,舍棄.
故y與x之間的關(guān)系式為3x+y=180或3x+2y=180
(3)由題意得AC=AD=2
∵△BCD∽△BAC
∴= 設(shè)BD=x
則x(x+2)=( )2
解得x1=1 x2=-3(舍去)
∴ BD=1
∵△BCD∽△BAC
∴= 即=
∴CD=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點(diǎn),AE=CF,連接EF,BF,EF與對(duì)角線AC交于O點(diǎn),且BE=BF,∠BEF=2∠BAC。
(1)求證:OE=OF;
(2)若BC=,求AB的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程
(1)x2-7x+6=0
(2)(5x-1)2=3(5x-1)
(3) x2-4x-3=0 (用配方法)
(4) x2+4x+2=0(用公式法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在在四邊形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒2cm的速度沿線段AD向點(diǎn)D運(yùn)動(dòng);動(dòng)點(diǎn)Q從C點(diǎn)出發(fā)以每秒3cm的速度沿CB向B點(diǎn)運(yùn)動(dòng),當(dāng)P點(diǎn)到達(dá)D點(diǎn)時(shí),動(dòng)點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P、Q同時(shí)出發(fā),并運(yùn)動(dòng)了t秒,回答下列問題:
(1)BC= cm;
(2)當(dāng)t= 秒時(shí),四邊形PQBA成為矩形.
(3)是否存在t,使得△DQC是等腰三角形?若存在,請(qǐng)求出t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)E,F分別在邊BC,AC上,沿EF所在的直線折疊∠C,使點(diǎn)C的對(duì)應(yīng)點(diǎn)D恰好落在邊AB上,若△EFC和△ABC相似,則AD的長(zhǎng)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),且.
(1)求拋物線的解析式和頂點(diǎn)的坐標(biāo);
(2)判斷的形狀,證明你的結(jié)論;
(3)點(diǎn)是軸上的一個(gè)動(dòng)點(diǎn),當(dāng)的周長(zhǎng)最小時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做“等對(duì)角四邊形”.
(1)已知:如圖1,四邊形ABCD是等對(duì)角四邊形,∠A≠∠C,∠A=60°,∠B=75°,則:∠C= °,∠D= °;
(2)已知,如圖2,在平面直角坐標(biāo)系xOy中,四邊形ABCD是等對(duì)角四邊形,其中A(﹣2,0),C(2,0),B(-1,),點(diǎn)D在y軸上.
①若拋物線y=ax2+bx+c過點(diǎn)A,C,D,求二次函數(shù)的解析式;
②若拋物線y=ax2+bx+c(a<0)過點(diǎn)A,C,點(diǎn)P在拋物線上,當(dāng)滿足∠APC=∠ADC的P點(diǎn)至少有3個(gè)時(shí),總有不等式2n﹣+成立,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅游景點(diǎn)的年游客量y(萬(wàn)人)是門票價(jià)格x(元)的一次函數(shù),其函數(shù)圖像如下圖.
(1)求y關(guān)于x的函數(shù)解析式;
(2)經(jīng)過景點(diǎn)工作人員統(tǒng)計(jì)發(fā)現(xiàn):每賣出一張門票所需成本為20元.那么要想獲得年利潤(rùn)11500萬(wàn)元,且門票價(jià)格不得高于230元,該年的門票價(jià)格應(yīng)該定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】愛好數(shù)學(xué)的甲、乙兩個(gè)同學(xué)做了一個(gè)數(shù)字游戲:拿出三張正面寫有數(shù)字﹣1,0,1且背面完全相同的卡片,將這三張卡片背面朝上洗勻后,甲先隨機(jī)抽取一張,將所得數(shù)字作為p的值,然后將卡片放回并洗勻,乙再?gòu)倪@三張卡片中隨機(jī)抽取一張,將所得數(shù)字作為q值,兩次結(jié)果記為.
(1)請(qǐng)你幫他們用樹狀圖或列表法表示所有可能出現(xiàn)的結(jié)果;
(2)求滿足關(guān)于x的方程沒有實(shí)數(shù)根的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com