如圖,點(diǎn)C是⊙O的直徑AB延長線上的一點(diǎn),且有BO=BD=BC.
(1)求證:CD是⊙O的切線;
(2)若半徑OB=2,求AD的長.
【答案】分析:(1)由于BO=BD=BC,即DB為△ODC的邊OC的中線,且有DB=OC,則∠ODC=90°,然后根據(jù)切線的判定方法即可得到結(jié)論;
(2)由AB為⊙O的直徑得∠BDA=90°,而BO=BD=2,則AB=2BD=4,然后根據(jù)勾股定理可計(jì)算出AD.
解答:(1)證明:連結(jié)OD,如圖,
∵BO=BD=BC,
∴BD為△ODC的中線,且DB=OC,
∴∠ODC=90°,
∴OD⊥CD,
而OD為⊙O的半徑,
∴CD是⊙O的切線;

(2)解:∵AB為⊙O的直徑,
∴∠BDA=90°,
∵BO=BD=2,
∴AB=2BD=4,
∴AD==2
點(diǎn)評(píng):本題考查了切線的判定定理:過半徑的外端點(diǎn)且與半徑垂直的直線為圓的切線.也考查了直角三角形的判定方法、勾股定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

6、如圖,把一塊含有30°的直角尺ACB繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使得點(diǎn)A與CB的延長線上的點(diǎn)E重合,連接CD,則∠BCD的度數(shù)是
15°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇無錫宜興外國語學(xué)校八年級(jí)下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:填空題

反比例函數(shù)在第一象限內(nèi)的圖象如圖,點(diǎn)M是圖像上一點(diǎn),MP垂

直x軸于點(diǎn)P,如果△MOP的面積為8,那么k的值等于           。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,把一塊含有30°的直角尺ACB繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使得點(diǎn)A與CB的延長線上的點(diǎn)E重合,連接CD,則∠BCD的度數(shù)是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:山東省期末題 題型:填空題

如圖,把一塊含有30°的直角尺ACB繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使得點(diǎn)A與CB的延長線上的點(diǎn)E重合,連接CD,則∠BCD的度數(shù)是(    ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:湖南省月考題 題型:填空題

如圖,把一塊含有30°的直角尺ACB繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使得點(diǎn)A與CB的延長線上的點(diǎn)E重合,連接CD,則∠BCD的度數(shù)是 _________ 。

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹