在平面直角坐標(biāo)系中,已知拋物線(b,c為常數(shù))的頂點(diǎn)為P,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,﹣1),C的坐標(biāo)為(4,3),直角頂點(diǎn)B在第四象限.

(1)如圖,若該拋物線過A,B兩點(diǎn),求該拋物線的函數(shù)表達(dá)式;
(2)平移(1)中的拋物線,使頂點(diǎn)P在直線AC上滑動(dòng),且與AC交于另一點(diǎn)Q.
(i)若點(diǎn)M在直線AC下方,且為平移前(1)中的拋物線上的點(diǎn),當(dāng)以M、P、Q三點(diǎn)為頂點(diǎn)的三角形是等腰直角三角形時(shí),求出所有符合條件的點(diǎn)M的坐標(biāo);
(ii)取BC的中點(diǎn)N,連接NP,BQ.試探究是否存在最大值?若存在,求出該最大值;若不存在,請說明理由.

解:(1)由題意,得點(diǎn)B的坐標(biāo)為(4,﹣1).
∵拋物線過A(0,﹣1),B(4,﹣1)兩點(diǎn),
,解得
∴拋物線的函數(shù)表達(dá)式為:。
(2)(i)∵A(0,﹣1),C(4,3),∴直線AC的解析式為:y=x﹣1。
設(shè)平移前拋物線的頂點(diǎn)為P0,則由(1)可得P0的坐標(biāo)為(2,1),且P0在直線AC上。
∵點(diǎn)P在直線AC上滑動(dòng),∴可設(shè)P的坐標(biāo)為(m,m﹣1)。
則平移后拋物線的函數(shù)表達(dá)式為:。
解方程組:,解得,
∴P(m,m﹣1),Q(m﹣2,m﹣3)。
過點(diǎn)P作PE∥x軸,過點(diǎn)Q作QE∥y軸,則
PE=m﹣(m﹣2)=2,QE=(m﹣1)﹣(m﹣3)=2,
∴PQ==AP0
若△MPQ為等腰直角三角形,則可分為以下兩種情況:
①當(dāng)PQ為直角邊時(shí):點(diǎn)M到PQ的距離為(即為PQ的長),
由A(0,﹣1),B(4,﹣1),P0(2,1)可知,
△ABP0為等腰直角三角形,且BP0⊥AC,BP0=。
如答圖1,過點(diǎn)B作直線l1∥AC,交拋物線于點(diǎn)M,則M為符合條件的點(diǎn)。
∴可設(shè)直線l1的解析式為:y=x+b1。
∵B(4,﹣1),∴﹣1=4+b1,解得b1=﹣5。∴直線l1的解析式為:y=x﹣5。
解方程組,得:。
∴M1(4,﹣1),M2(﹣2,﹣7)。

②當(dāng)PQ為斜邊時(shí):MP=MQ=2,可求得點(diǎn)M到PQ的距離為
如答圖1,取AB的中點(diǎn)F,則點(diǎn)F的坐標(biāo)為(2,﹣1)。
由A(0,﹣1),F(xiàn)(2,﹣1),P0(2,1)可知:
△AFP0為等腰直角三角形,且點(diǎn)F到直線AC的距離為。
過點(diǎn)F作直線l2∥AC,交拋物線于點(diǎn)M,則M為符合條件的點(diǎn)。
∴可設(shè)直線l2的解析式為:y=x+b2,
∵F(2,﹣1),∴﹣1=2+b2,解得b1=﹣3。∴直線l2的解析式為:y=x﹣3。
解方程組,得:。
∴M3),M4)。
綜上所述,所有符合條件的點(diǎn)M的坐標(biāo)為:
M1(4,﹣1),M2(﹣2,﹣7),M3,),M4,)。
(ii)存在最大值。理由如下:
由(i)知PQ=為定值,則當(dāng)NP+BQ取最小值時(shí),有最大值。
如答圖2,取點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)B′,易得點(diǎn)B′的坐標(biāo)為(0,3),BQ=B′Q。

連接QF,F(xiàn)N,QB′,易得FN∥PQ,且FN=PQ,
∴四邊形PQFN為平行四邊形。
∴NP=FQ。
∴NP+BQ=FQ+B′P≥FB′。
∴當(dāng)B′、Q、F三點(diǎn)共線時(shí),NP+BQ最小,最小值為。
的最大值為

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線y=x+3與坐標(biāo)軸分別交于A,B兩點(diǎn),拋物線y=ax2+bx﹣3a經(jīng)過點(diǎn)A,B,頂點(diǎn)為C,連接CB并延長交x軸于點(diǎn)E,點(diǎn)D與點(diǎn)B關(guān)于拋物線的對(duì)稱軸MN對(duì)稱.


(1)求拋物線的解析式及頂點(diǎn)C的坐標(biāo);
(2)求證:四邊形ABCD是直角梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線與x軸交與點(diǎn)A(1,0)與點(diǎn)B, 且過點(diǎn)C(0,3),

(1)求該拋物線的解析式;
(2)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?,若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值.若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,矩形OABC在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A(0,4),C(2,0),將矩形OABC繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)1350,得到矩形EFGH(點(diǎn)E與O重合).

(1)若GH交y軸于點(diǎn)M,則∠FOM=      ,OM=        
(2)矩形EFGH沿y軸向上平移t個(gè)單位.
①直線GH與x軸交于點(diǎn)D,若AD∥BO,求t的值;
②若矩形EFHG與矩形OABC重疊部分的面積為S個(gè)平方單位,試求當(dāng)0<t≤時(shí),S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

矩形紙片ABCD中,AB=5,AD=4.
(1)如圖1,四邊形MNEF是在矩形紙片ABCD中裁剪出的一個(gè)正方形.你能否在該矩形中裁剪出一個(gè)面積最大的正方形,最大面積是多少?說明理由;

(2)請用矩形紙片ABCD剪拼成一個(gè)面積最大的正方形.要求:在圖2的矩形ABCD中畫出裁剪線,并在網(wǎng)格中畫出用裁剪出的紙片拼成的正方形示意圖(使正方形的頂點(diǎn)都在網(wǎng)格的格點(diǎn)上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)(a>0)的圖象與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點(diǎn),與y軸交于點(diǎn)C,x1,x2是方程的兩根.

(1)若拋物線的頂點(diǎn)為D,求SABC:SACD的值;
(2)若∠ADC=90°,求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A(1,-4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上。

(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,如圖(a),拋物線經(jīng)過點(diǎn)A(x1,0),B(x2,0),C(0,-2),其頂點(diǎn)為D.以AB為直徑的⊙M交y軸于點(diǎn)E、F,過點(diǎn)E作⊙M的切線交x軸于點(diǎn)N!螼NE=30°,。

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)連結(jié)AD、BD,在(1)中的拋物線上是否存在一點(diǎn)P,使得△ABP與△ADB相似?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說明理由;
(3)如圖(b),點(diǎn)Q為上的動(dòng)點(diǎn)(Q不與E、F重合),連結(jié)AQ交y軸于點(diǎn)H,問:AH·AQ是否為定值?若是,請求出這個(gè)定值;若不是,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線y1=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(1,4),它與直線y2=x+1的一個(gè)交點(diǎn)的橫坐標(biāo)為2.

(1)求拋物線的解析式;
(2)在給出的坐標(biāo)系中畫出拋物線y1=ax2+bx+c(a≠0)及直線y2=x+1的圖象,并根據(jù)圖象,直接寫出使得y1≥y2的x的取值范圍;
(3)設(shè)拋物線與x軸的右邊交點(diǎn)為A,過點(diǎn)A作x軸的垂線,交直線y2=x+1于點(diǎn)B,點(diǎn)P在拋物線上,當(dāng)SPAB≤6時(shí),求點(diǎn)P的橫坐標(biāo)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案