(2009•河南)點(diǎn)A(2,3)在反比例函數(shù)的圖象上,當(dāng)1≤x≤3時(shí),y的取值范圍是   
【答案】分析:首先根據(jù)點(diǎn)A(2,3)在反比例函數(shù)的圖象上,求出系數(shù)k的值,可得y=,然后根據(jù)1≤x≤3,進(jìn)而求出y的取值范圍.
解答:解:∵點(diǎn)A(2,3)在反比例函數(shù)的圖象上,
∴3=,
解得k=6,
∴y=,
∵1≤x≤3,
∴2≤y≤6.
故答案為2≤y≤6.
點(diǎn)評(píng):本題主要考查反比例函數(shù)的性質(zhì),解答本題的關(guān)鍵是求出反比例函數(shù)的系數(shù)k的值,還要熟練掌握解不等式的知識(shí)點(diǎn),此題基礎(chǔ)題,比較簡(jiǎn)單.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2009•河南)點(diǎn)A(2,3)在反比例函數(shù)y=
kx
的圖象上,當(dāng)1≤x≤3時(shí),y的取值范圍是
2≤y≤6
2≤y≤6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省常州市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2009•河南)如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點(diǎn).
(1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā).沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向終點(diǎn)D運(yùn)動(dòng).速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒.過點(diǎn)P作PE⊥AB交AC于點(diǎn)E.
①過點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.當(dāng)t為何值時(shí),線段EG最長(zhǎng)?
②連接EQ.在點(diǎn)P、Q運(yùn)動(dòng)的過程中,判斷有幾個(gè)時(shí)刻使得△CEQ是等腰三角形?請(qǐng)直接寫出相應(yīng)的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷(瓜瀝一中 趙桂清)(解析版) 題型:解答題

(2009•河南)如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點(diǎn).
(1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā).沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向終點(diǎn)D運(yùn)動(dòng).速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒.過點(diǎn)P作PE⊥AB交AC于點(diǎn)E.
①過點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.當(dāng)t為何值時(shí),線段EG最長(zhǎng)?
②連接EQ.在點(diǎn)P、Q運(yùn)動(dòng)的過程中,判斷有幾個(gè)時(shí)刻使得△CEQ是等腰三角形?請(qǐng)直接寫出相應(yīng)的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省蘇州市昆山市九年級(jí)(下)數(shù)學(xué)調(diào)研測(cè)試卷(解析版) 題型:填空題

(2009•河南)點(diǎn)A(2,3)在反比例函數(shù)的圖象上,當(dāng)1≤x≤3時(shí),y的取值范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案