如圖,銳角△ABC中,以BC為直徑的半圓分別交AB,AC于點(diǎn)D,E,記△ADE的面積為S1,△ABC的面積為S2,則=( )

A.sinA
B.sin2A
C.cosA
D.cos2A
【答案】分析:如圖,連接BE.構(gòu)建直角△ABE,通過解該直角三角形求得cosA=;然后通過相似三角形△AED∽△ABC的對應(yīng)邊的比成比例知=;最后結(jié)合三角形的面積公式分別求得△ADE、△ABC的面積.
解答:解:如圖,連接BE.
∵BC為半圓的直徑,
∴∠BEC=∠AEB=90°.
∴在直角△ABE中,cosA=
∵點(diǎn)D、B、C、E四點(diǎn)共圓,
∴∠ABC+∠DEC=180°.
∵∠DEC+∠AED=180°,
∴∠ABC=∠AED.
又∵∠A=∠A,
∴△AED∽△ABC,
=
∵S1=AE•AD•sinA,S2=AB•AC•sinA,
===cos2A.
故選D.
點(diǎn)評:本題考查了相似三角形的判定與性質(zhì)、圓周角定理以及解直角三角形等知識點(diǎn).解答該題時,借用了圓內(nèi)接四邊形的內(nèi)對角互補(bǔ)的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,銳角△ABC中,PQRS是△ABC的內(nèi)接矩形,且S△ABC=nS矩形PQRS,其中n為不小于3的自然數(shù).求證:
BSAB
需為無理數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,銳角△ABC中,AB=10cm,BC=9cm,△ABC的面積為27cm2.求tanB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,銳角△ABC中,AD和CE分別是BC和AB邊上的高,若AD與CE所夾的銳角是58°,則∠BAC+∠BCA的大小是
122°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•浙江)如圖,銳角△ABC中,以BC為直徑的半圓分別交AB,AC于點(diǎn)D,E,記△ADE的面積為S1,△ABC的面積為S2,則
S1
S2
=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,銳角△ABC中,AD⊥BC于D,BE⊥AC于E,AD與BE相交于F,那么∠ACB與∠DFE 的關(guān)系是( 。

查看答案和解析>>

同步練習(xí)冊答案