已知:(a+2)2與|b-3|互為相反數(shù),則a-b的值是


  1. A.
    5
  2. B.
    1
  3. C.
    -5
  4. D.
    -1
C
分析:根據(jù)互為相反數(shù)的兩個(gè)數(shù)的和等于0列式,再根據(jù)非負(fù)數(shù)的性質(zhì)列式求出a、b的值,然后代入代數(shù)式進(jìn)行計(jì)算即可得解.
解答:∵(a+2)2與|b-3|互為相反數(shù),
∴(a+2)2+|b-3|=0,
∴a+2=0,b-3=0,
解得a=-2,b=3,
所以a-b=-2-3=-5.
故選C.
點(diǎn)評(píng):本題考查了非負(fù)數(shù)的性質(zhì):幾個(gè)非負(fù)數(shù)的和為0時(shí),這幾個(gè)非負(fù)數(shù)都為0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

3、已知△ABC≌△A′C′B′,∠B與∠C′,∠C與∠B′是對(duì)應(yīng)角,有下列4個(gè)結(jié)論:①BC=C′B′;②AC=A′B′;③AB=A′B′;④∠ACB=∠A′B′C′,其中正確的結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、已知在三角形ABC中,∠A與∠C的度數(shù)比是5:7,且∠B比∠A大10°,那么∠B為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們都知道,在等腰三角形中.有等邊對(duì)等角(或等角對(duì)等邊),那么在不等腰三角形中邊與角的大小關(guān)系又是怎樣的呢?讓我們來(lái)探究一下.
如圖1,在△ABC中,已知AB>AC,猜想∠B與∠C的大小關(guān)系,并證明你的結(jié)論;
證明:猜想∠C>∠B,對(duì)于這個(gè)猜想我們可以這樣來(lái)證明:
在AB上截取AD=AC,連接CD,
∵AB>AC,∴點(diǎn)D必在∠BCA的內(nèi)部
∴∠BCA>∠ACD
∵AD=AC,∴∠ACD=∠ADC
又∵∠ADC是△BCD的一個(gè)外角,∴∠ADC>∠B
∴∠BCA>∠ACD>∠B 即∠C>∠B
上面的探究過(guò)程是研究圖形中不等量關(guān)系證明的一種方法,將不等的線段轉(zhuǎn)化為相等的線段,由此解決問(wèn)題,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化的思想方法.請(qǐng)你仿照類比上述方法,解決下面問(wèn)題:
(1)如圖2,在△ABC中,已知AC>BC,猜想∠B與∠A的大小關(guān)系,并證明你的結(jié)論;
(2)如圖3,△ABC中,已知∠C>∠B,猜想AB與AC大小關(guān)系,并證明你的結(jié)論;
(3)根據(jù)前面得到的結(jié)果,請(qǐng)你總結(jié)出三角形中邊、角不等關(guān)系的一般性結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)等腰梯形的下底與上底之差等于一腰長(zhǎng),則這個(gè)等腰梯形中較小的角的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知小明和樹(shù)的高與影長(zhǎng),試找出點(diǎn)光源和旗桿的影長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案