如圖,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直徑,⊙O交BC于點D,DE⊥AC于點E,BE交⊙O于點F,連接AF,AF的延長線交DE于點P.
(1)求證:DE是⊙O的切線;
(2)求tan∠ABE的值;
(3)若OA=2,求線段AP的長.
解:(1)證明:如圖,連接AD、OD,
∵AB是⊙O的直徑,∴∠ADB=90°。
∵AB=AC,∴AD垂直平分BC,即DC=DB。
∴OD為△BAC的中位線!郞D∥AC。
又∵DE⊥AC,∴OD⊥DE。
∴DE是⊙O的切線。
(2)∵OD⊥DE,DE⊥AC,∴四邊形OAED為矩形。
∵OD=OA,∴四邊形OAED為正方形。
∴AE=AO。∴。
(3)∵AB是⊙O的直徑,∴∠AFB=90°!唷螦BF+∠FAB=90°。
∵∠EAP+∠FAB=90°,∴∠EAP=∠ABF!鄑an∠EAP=tan∠ABE=。
在Rt△EAP中,AE=2,
∵,∴EP=1。
∴。
【解析】
試題分析:(1)連接AD、OD,根據(jù)圓周角定理得∠ADB=90°,由AB=AC,根據(jù)等腰三角形的直線得DC=DB,所以O(shè)D為△BAC的中位線,則OD∥AC,然后利用DE⊥AC得到OD⊥DE,從而根據(jù)切線的判定定理即可得到結(jié)
論。
(2)易得四邊形OAED為正方形,然后根據(jù)正切的定義計算tan∠ABE的值。
(3)由AB是⊙O的直徑得∠AFB=90°,再根據(jù)等角的余角相等得∠EAP=∠ABF,則tan∠EAP=tan∠ABE=,在Rt△EAP中,利用正切的定義可計算出EP,然后利用勾股定理可計算出AP。
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com