已知平面坐標(biāo)系中有一點(diǎn)M(m-1,2m+3),m為何值時(shí),

(1)點(diǎn)Mx軸的距離為1;

(2)點(diǎn)My軸的距離為2.

答案:
解析:

  (1)m=-1或m=-2

  (2)m=3或m=-1


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知平面直角坐標(biāo)系中有一線段AB,其中A(1,3)B(4,5),若A、B縱坐標(biāo)不變,橫坐標(biāo)擴(kuò)大為原來的2倍,則線段AB
 
向拉長為原來的
 
倍,若點(diǎn)A、B縱坐標(biāo)不變,橫坐標(biāo)變成原來的
12
,則線段AB
 
向縮短為原來的
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小明在一次數(shù)學(xué)興趣小組活動(dòng)中,對一個(gè)數(shù)學(xué)問題作如下探究:

問題情境:如圖1,四邊形ABCD中,AD∥BC,點(diǎn)E為DC邊的中點(diǎn),連結(jié)AE并延長交BC的延長線于點(diǎn)F.求證:S四邊形ABCD=SABF.(S表示面積)

問題遷移:如圖2,在已知銳角∠AOB內(nèi)有一定點(diǎn)P.過點(diǎn)P任意作一條直線MN,分別交射線OA、OB于點(diǎn)M、N.小明將直線MN繞著點(diǎn)P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值.請問當(dāng)直線MN在什么位置時(shí),△MON的面積最小,并說明理由.

實(shí)際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部分計(jì)劃以公路OA、OB和經(jīng)過防疫站的一條直線MN為隔離線,建立一個(gè)面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66º,∠POB=30º,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66º≈0.91,tan66º≈2.25,≈1.73)

拓展延伸:如圖4,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B、C、P的坐標(biāo)分別為(6,0)、(6,3)、、(4,2),過點(diǎn)P的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個(gè)四邊形,求其中以點(diǎn)O為頂點(diǎn)的四邊形的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(江蘇連云港卷)數(shù)學(xué)(帶解析) 題型:解答題

小明在一次數(shù)學(xué)興趣小組活動(dòng)中,對一個(gè)數(shù)學(xué)問題作如下探究:
問題情境:如圖1,四邊形ABCD中,AD∥BC,點(diǎn)E為DC邊的中點(diǎn),連結(jié)AE并延長交BC的延長線于點(diǎn)F.求證:S四邊形ABCD=SABF.(S表示面積)

問題遷移:如圖2,在已知銳角∠AOB內(nèi)有一定點(diǎn)P.過點(diǎn)P任意作一條直線MN,分別交射線OA、OB于點(diǎn)M、N.小明將直線MN繞著點(diǎn)P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值.請問當(dāng)直線MN在什么位置時(shí),△MON的面積最小,并說明理由.

實(shí)際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部分計(jì)劃以公路OA、OB和經(jīng)過防疫站的一條直線MN為隔離線,建立一個(gè)面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66º,∠POB=30º,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66º≈0.91,tan66º≈2.25,≈1.73)
拓展延伸:如圖4,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B、C、P的坐標(biāo)分別為(6,0)、(6,3)、、(4,2),過點(diǎn)P的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個(gè)四邊形,求其中以點(diǎn)O為頂點(diǎn)的四邊形的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江西省景德鎮(zhèn)市九年級第二次質(zhì)量檢測數(shù)學(xué)卷(帶解析) 題型:解答題

如圖,在平面直角坐標(biāo)系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC經(jīng)過旋轉(zhuǎn)變換得到的.

(1)問由△ABC旋轉(zhuǎn)得到的△AA1C1的旋轉(zhuǎn)角的度數(shù)是多少?并寫出旋轉(zhuǎn)中心的坐標(biāo);
(2)請你畫出仍以(1)中的旋轉(zhuǎn)中心為旋轉(zhuǎn)中心,將△AA1C1、△ABC分別按順時(shí)針、逆時(shí)針各旋轉(zhuǎn)90°的兩個(gè)三角形,并寫出變換后與A1相對應(yīng)點(diǎn)A2的坐標(biāo);
(3)利用變換前后所形成圖案證明勾股定理(設(shè)△ABC兩直角邊為、,斜邊為).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省景德鎮(zhèn)市九年級第二次質(zhì)量檢測數(shù)學(xué)卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC經(jīng)過旋轉(zhuǎn)變換得到的.

(1)問由△ABC旋轉(zhuǎn)得到的△AA1C1的旋轉(zhuǎn)角的度數(shù)是多少?并寫出旋轉(zhuǎn)中心的坐標(biāo);

(2)請你畫出仍以(1)中的旋轉(zhuǎn)中心為旋轉(zhuǎn)中心,將△AA1C1、△ABC分別按順時(shí)針、逆時(shí)針各旋轉(zhuǎn)90°的兩個(gè)三角形,并寫出變換后與A1相對應(yīng)點(diǎn)A2的坐標(biāo);

(3)利用變換前后所形成圖案證明勾股定理(設(shè)△ABC兩直角邊為、,斜邊為).

 

查看答案和解析>>

同步練習(xí)冊答案