(2006•廈門)如圖,在四邊形ABCD中,∠A=90°,∠ABC與∠ADC互補(bǔ).
(1)求∠C的度數(shù);
(2)若BC>CD且AB=AD,請(qǐng)?jiān)趫D上畫出一條線段,把四邊形ABCD分成兩部分,使得這兩部分能夠重新拼成一個(gè)正方形,并說明理由;
(3)若CD=6,BC=8,S四邊形ABCD=49,求AB的值.

【答案】分析:(1)根據(jù)多邊形的內(nèi)角和公式可得到∠C的度數(shù)為90°;
(2)過點(diǎn)A作AE⊥BC,垂足為E.則線段AE把四邊形ABCD分成△ABE和四邊形AECD兩部分,把△ABE以A點(diǎn)為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)90°,則被分成的兩部分重新拼成一個(gè)正方形.可以根據(jù)已知利用AAS來(lái)判定△ABE≌△ADF從而得到AE=AF,即得到四邊形AECF是正方形;
(3)連接BD,根據(jù)勾股定理求得BD的長(zhǎng),根據(jù)已知得到△ABD的面積,從而可求得AM的長(zhǎng),再根據(jù)相似三角形的判定得到△ABM∽△ABD.根據(jù)相似三角形的對(duì)應(yīng)邊成比例可得到BM的長(zhǎng),再根據(jù)勾股定理即可求得AB的長(zhǎng).
解答:解:(1)∵∠ABC與∠ADC互補(bǔ),
∴∠ABC+∠ADC=180°.
∵∠A=90°,
∴∠C=360°-90°-180°=90°;

(2)過點(diǎn)A作AE⊥BC,垂足為E.
則線段AE把四邊形ABCD分成△ABE和四邊形AECD兩部分,把△ABE以A點(diǎn)為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)90°,則被分成的兩部分重新拼成一個(gè)正方形.
過點(diǎn)A作AF∥BC交CD的延長(zhǎng)線于F,
∵∠ABC+∠ADC=180°,又∠ADF+∠ADC=180°,
∴∠ABC=∠ADF.
∵AD=AB,∠AEC=∠AFD=90°,∴△ABE≌△ADF.
∴AE=AF.∴四邊形AECF是正方形;

(3)解法1:連接BD,
∵∠C=90°,CD=6,BC=8,Rt△BCD中,BD==10
又∵S四邊形ABCD=49,∴S△ABD=49-24=25.
過點(diǎn)A作AM⊥BD垂足為M,
∴S△ABD=×BD×AM=25.∴AM=5.
又∵∠BAD=90°,∴△ABM∽△DAM.
=
設(shè)BM=x,則MD=10-x,
=.解得x=5.
∴AB=5
解法2:連接BD,∠A=90°.
設(shè)AB=x,AD=y,則x2+y2=102,①
xy=25,∴xy=50.②
由①,②得:(x-y)2=0.
∴x=y.
2x2=100.
∴x=5
點(diǎn)評(píng):此題考查了學(xué)生對(duì)正方形的判定、相似三角形的判定、全等三角形的判定等知識(shí)點(diǎn)的綜合運(yùn)用能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2006•廈門)如圖1,連接△ABC的各邊中點(diǎn)得到一個(gè)新的△A1B1C1,又連接△A1B1C1的各邊中點(diǎn)得到△A2B2C2,如此無(wú)限繼續(xù)下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…
已知A(0,0),B(3,0),C(2,2).

(1)求這一系列三角形趨向于一個(gè)點(diǎn)M的坐標(biāo);
(2)如圖2,分別求出經(jīng)過A,B,C三點(diǎn)的拋物線解析式和經(jīng)過A1,B1,C1三點(diǎn)的拋物線解析式;
(3)設(shè)兩拋物線的交點(diǎn)分別為E、F,連接EF、EC1、FC1、EC2、FC2、C1C2,問:C2與△EC1F的關(guān)系是什么?
(4)如圖3,問:A,A2,C,C2四點(diǎn)可不可能在同一條拋物線上,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:填空題

(2006•廈門)如圖,溫度計(jì)上表示了攝氏溫度(℃)與華氏溫度(℉)的刻度.能否用一個(gè)函數(shù)關(guān)系式來(lái)表示攝氏溫度y(℃)和華氏溫度x(℉)的關(guān)系:    ;如果氣溫是攝氏32度,那相當(dāng)于華氏    ℉.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識(shí)》(03)(解析版) 題型:選擇題

(2006•廈門)如圖所示,單位圓中弧的長(zhǎng)為x,f(x)表示與弦AB所圍成的弓形面積的2倍,則函數(shù)y=f(x)的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年合肥一中數(shù)理特長(zhǎng)班招生考試數(shù)學(xué)試卷(解析版) 題型:選擇題

(2006•廈門)如圖所示,單位圓中弧的長(zhǎng)為x,f(x)表示與弦AB所圍成的弓形面積的2倍,則函數(shù)y=f(x)的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年福建省廈門市中考數(shù)學(xué)試卷(課標(biāo)B卷)(解析版) 題型:解答題

(2006•廈門)如圖1,連接△ABC的各邊中點(diǎn)得到一個(gè)新的△A1B1C1,又連接△A1B1C1的各邊中點(diǎn)得到△A2B2C2,如此無(wú)限繼續(xù)下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…
已知A(0,0),B(3,0),C(2,2).

(1)求這一系列三角形趨向于一個(gè)點(diǎn)M的坐標(biāo);
(2)如圖2,分別求出經(jīng)過A,B,C三點(diǎn)的拋物線解析式和經(jīng)過A1,B1,C1三點(diǎn)的拋物線解析式;
(3)設(shè)兩拋物線的交點(diǎn)分別為E、F,連接EF、EC1、FC1、EC2、FC2、C1C2,問:C2與△EC1F的關(guān)系是什么?
(4)如圖3,問:A,A2,C,C2四點(diǎn)可不可能在同一條拋物線上,試說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案