已知,矩形ABCO在直角坐標(biāo)系的第一象限內(nèi),如下圖,點A、C的坐標(biāo)分別為(1,0)、(0,3),現(xiàn)將矩形ABCO繞點B逆時針旋轉(zhuǎn)得矩形A'BC'O',使點O'落在x軸的正半軸上,且AB與C'O'交于點D,求:
(1)點O'的坐標(biāo);
(2)線段AD的長度;
(3)經(jīng)過兩點O'、C'的直線的函數(shù)表達式。
解:(1)連接BO和BO',由題意知OA=O'A
∴點O'的坐標(biāo)為(2,0);
(2)設(shè)AD=m
∵BC'=O'A=1,∠BC'D=∠O'AD=90°,∠BDC'=∠O'DA
∴Rt△BDC'≌Rt△O'DA
∴C'D=AD=m
則DO'=3﹣m
在Rt△ADO'中,AD2+AO'2=DO'2
∴m2+12=(3﹣m)2
解之得:m=,
∴線段AD的長度為;
(3)設(shè)經(jīng)過點O'、C'的直線的函數(shù)表達式為y=kx+b,
由(1)和(2)得點O'的坐標(biāo)為(2,0),
點D的坐標(biāo)為(1,),
而點O'和D都在這條直線上,

解之得:,b=,
∴經(jīng)過點O'、C'的直線的函數(shù)表達式為y=x+。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,矩形ABCO在直角坐標(biāo)系的第一象限內(nèi),如圖,點A、C的坐標(biāo)分別為精英家教網(wǎng)(1,0)、(0,3),現(xiàn)將矩形ABCO繞點B逆時針旋轉(zhuǎn)得矩形A′BC′O′,使點O′落在x軸的正半軸上,且AB與C′O′交于點D,求:
(1)點O′的坐標(biāo);
(2)線段AD的長度;
(3)經(jīng)過兩點O′、C′的直線的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,矩形ABCO在直角坐標(biāo)系的第一象限內(nèi),如圖,點A、C的坐標(biāo)分別為(1,0)、(0,3),現(xiàn)將矩形ABCO繞點B逆時針旋轉(zhuǎn)得矩形A′BC′O′,使點O′落在x軸的正半軸上,且AB與C′O′交于點D,求:
(1)點O′的坐標(biāo);
(2)線段AD的長度;
(3)經(jīng)過兩點O′、C′的直線的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:廣東省期末題 題型:解答題

已知,矩形ABCO在直角坐標(biāo)系的第一象限內(nèi),如圖,點A、C的坐標(biāo)分別為(1,0)、(0,3),現(xiàn)將矩形ABCO繞點B逆時針旋轉(zhuǎn)得矩形A'BC'O',使點O'落在x軸的正半軸上,且AB與C'O'交于點D,求:
(1)點O'的坐標(biāo);
(2)線段AD的長度;
(3)經(jīng)過兩點O'、C'的直線的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:廣東省期末題 題型:解答題

已知,矩形ABCO在直角坐標(biāo)系的第一象限內(nèi),如圖,點A、C的坐標(biāo)分別為(1,0)、(0,3),現(xiàn)將矩形ABCO繞點B逆時針旋轉(zhuǎn)得矩形A'BC'O',使點O' 落在x軸的正半軸上,且AB與C'O'交于點D,求:
(1)點O' 的坐標(biāo);
(2)線段AD的長度;
(3)經(jīng)過兩點O'、C' 的直線的函數(shù)表達。

查看答案和解析>>

同步練習(xí)冊答案