若有理數(shù)a、b滿足|a+6|+(b-4)2=0,則a-b的值為
-10
-10
分析:根據(jù)|a+6|+(b-4)2=0可知a+6=0,b-4=0,故可求出a、b的值,再求出a-b的值即可.
解答:解:∵|a+6|+(b-4)2=0,
∴a+6=0,b-4=0,
∴a=-6,b=4,
∴a-b=-6-4=-10.
故答案為:-10.
點評:本題考查的是非負數(shù)的性質(zhì),即幾個非負數(shù)的和為0時,這幾個非負數(shù)都為0.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

請觀察下列算式,找出規(guī)律并填空
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
1
4×5
=
1
4
-
1
5

則第10個算式是
 
=
 
,
第n個算式為
 
=
 

根據(jù)以上規(guī)律解答下題:
若有理數(shù)a,b滿足|a-1|+(b-3)2=0,試求:
1
ab
+
1
(a+2)(b+2)
+
1
(a+4)(b+4)
+…+
1
(a+100)(b+100)
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、若有理數(shù)a、b滿足ab>0,且a+b<0,則下列說法正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

19、若有理數(shù)a,b滿足|a-2|+(b+2)2=0,則ab2=
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

閱讀以下材料:
1
2×3
=
1
2
-
1
3
; 
1
2×4
=
1
2
(
1
2
-
1
4
)
; 
1
3×6
=
1
3
(
1
3
-
1
6
)
1
1×5
=
1
4
(
1
1
-
1
5
)

(1)觀察以上式子,其規(guī)律可用
1
n×(n+k)
=
1
k
(
1
n
-
1
n+k
)
1
k
(
1
n
-
1
n+k
)
表示
(2)根據(jù)以上規(guī)律,若有理數(shù)a、b滿足|a-1|+|b-3|=0,試求:
1
ab
+
1
(a+2)(b+2)
+
1
(a+4)(b+4)
+
1
(a+6)(b+6)
+…+
1
(a+100)(b+100)
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若有理數(shù)x,y滿足|x|=7,|y|=4,且|x+y|=x+y,則x-y=
3或11
3或11

查看答案和解析>>

同步練習冊答案