【題目】已知直線AB∥CD.
(1)如圖1,直接寫出∠BME、∠E、∠END的數(shù)量關(guān)系為 ;
(2)如圖2,∠BME與∠CNE的角平分線所在的直線相交于點(diǎn)P,試探究∠P與∠E之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,∠ABM=∠MBE,∠CDN=∠NDE,直線MB、ND交于點(diǎn)F,則 = .
【答案】(1) ∠E=∠END﹣∠BME (2) ∠E+2∠NPM=180°(3)
【解析】分析:(1)根據(jù)平行線的性質(zhì)和三角形外角定理即可解答.
(2)根據(jù)平行線的性質(zhì),三角形外角定理,角平分線的性質(zhì)即可解答.
(3)根據(jù)平行線的性質(zhì)和三角形外角定理即可解答.
詳解:(1)如圖1,∵AB∥CD,
∴∠END=∠EFB,
∵∠EFB是△MEF的外角,
∴∠E=∠EFB﹣∠BME=∠END﹣∠BME,
(2)如圖2,∵AB∥CD,
∴∠CNP=∠NGB,
∵∠NPM是△GPM的外角,
∴∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,
∵MQ平分∠BME,PN平分∠CNE,
∴∠CNE=2∠CNP,∠FME=2∠BMQ=2∠PMA,
∵AB∥CD,
∴∠MFE=∠CNE=2∠CNP,
∵△EFM中,∠E+∠FME+∠MFE=180°,
∴∠E+2∠PMA+2∠CNP=180°,
即∠E+2(∠PMA+∠CNP)=180°,
∴∠E+2∠NPM=180°;
(3)如圖3,延長(zhǎng)AB交DE于G,延長(zhǎng)CD交BF于H,
∵AB∥CD,
∴∠CDG=∠AGE,
∵∠ABE是△BEG的外角,
∴∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE,①
∵∠ABM=∠MBE,∠CDN=∠NDE,
∴∠ABM=∠ABE=∠CHB,∠CDN=∠CDE=∠FDH,
∵∠CHB是△DFH的外角,
∴∠F=∠CHB﹣∠FDH=∠ABE﹣∠CDE=(∠ABE﹣∠CDE),②
由①代入②,可得∠F=∠E,
即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一元一次方程的根是一元一次不等式組的解,則稱該一元一次方程為該不等式組的伴隨方程,這個(gè)根在數(shù)軸上對(duì)應(yīng)的點(diǎn)該不等式組的伴隨點(diǎn).
(1)在方程①,②,③中,不等式組 的伴隨方程是 ;(填序號(hào))
(2)如圖,M、N都是關(guān)于的不等式組的伴隨點(diǎn),求的取值范圍.
(3)不等式組的伴隨方程的根有且只有2個(gè)整數(shù),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某書店推出一種優(yōu)惠卡,每張卡售價(jià)為50元,憑卡購書可享受8折優(yōu)惠,小明同學(xué)到該書店購書,他先買購書卡再憑卡付款,結(jié)果省了10元。若此次小明不買卡直接購書,則他需要付款( )
A.380元B.360元C.340元D.300元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句中正確的是( )
A.兩個(gè)三角形的面積相等,那么這兩個(gè)三角形全等
B.三個(gè)內(nèi)角對(duì)應(yīng)相等的兩個(gè)三角形全等
C.兩個(gè)等腰直角三角形全等,那么它們的斜邊相等
D.兩邊及其中一邊所對(duì)的角對(duì)應(yīng)相等的兩個(gè)三角形全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三條不同的直線a,b,c在同一平面內(nèi),下列說法正確的個(gè)數(shù)是( )
①如果a∥b,a⊥c,那么b⊥c; ②如果b∥a,c∥a,那么b∥c;
③如果b⊥a,c⊥a,那么b⊥c; ④如果b⊥a,c⊥a,那么b∥c.
A,1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com