(2001•江西)如圖B是⊙O外一點,BO交⊙O于點A,BCD是⊙O的割線,若BA=3,BC=4,BD=5,則⊙O的半徑為   
【答案】分析:設(shè)圓的半徑是x,延長BO交圓于E,根據(jù)割線定理得BC•BD=BA•BE即可求得半徑的長.
解答:解:設(shè)圓的半徑是x,延長BO交圓于E
∵BC•BD=BA•BE,BA=3,BC=4,BD=5
∴3(3+2x)=20
∴x=
點評:此題要通過作輔助線構(gòu)造割線,熟練運用割線定理列方程計算.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:1998年全國中考數(shù)學試題匯編《一次函數(shù)》(01)(解析版) 題型:解答題

(2001•江西)如圖,矩形OABC的兩邊OC、OA分別是x軸和y軸上,過點B的直線切以O(shè)C為直徑的半圓O′于點E,交y軸于點F,連接OE,且已知C(-6,0),F(xiàn)(0,2).
(1)求EF的長;
(2)求經(jīng)過B、F兩點的直線的解析式;
(3)求tan∠EOF的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(2001•江西)如圖,矩形OABC的兩邊OC、OA分別是x軸和y軸上,過點B的直線切以O(shè)C為直徑的半圓O′于點E,交y軸于點F,連接OE,且已知C(-6,0),F(xiàn)(0,2).
(1)求EF的長;
(2)求經(jīng)過B、F兩點的直線的解析式;
(3)求tan∠EOF的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年江西省中考數(shù)學試卷(解析版) 題型:解答題

(2001•江西)如圖,矩形OABC的兩邊OC、OA分別是x軸和y軸上,過點B的直線切以O(shè)C為直徑的半圓O′于點E,交y軸于點F,連接OE,且已知C(-6,0),F(xiàn)(0,2).
(1)求EF的長;
(2)求經(jīng)過B、F兩點的直線的解析式;
(3)求tan∠EOF的值.

查看答案和解析>>

科目:初中數(shù)學 來源:1998年浙江省衢州市中考數(shù)學試卷 題型:解答題

(2001•江西)如圖,矩形OABC的兩邊OC、OA分別是x軸和y軸上,過點B的直線切以O(shè)C為直徑的半圓O′于點E,交y軸于點F,連接OE,且已知C(-6,0),F(xiàn)(0,2).
(1)求EF的長;
(2)求經(jīng)過B、F兩點的直線的解析式;
(3)求tan∠EOF的值.

查看答案和解析>>

科目:初中數(shù)學 來源:1998年浙江省金華市中考數(shù)學試卷 題型:解答題

(2001•江西)如圖,矩形OABC的兩邊OC、OA分別是x軸和y軸上,過點B的直線切以O(shè)C為直徑的半圓O′于點E,交y軸于點F,連接OE,且已知C(-6,0),F(xiàn)(0,2).
(1)求EF的長;
(2)求經(jīng)過B、F兩點的直線的解析式;
(3)求tan∠EOF的值.

查看答案和解析>>

同步練習冊答案