【題目】如圖,AB為弓形AB的弦,AB=2,弓形所在圓⊙O的半徑為2,點(diǎn)P為弧AB上動(dòng)點(diǎn),點(diǎn)I為△PAB的內(nèi)心,當(dāng)點(diǎn)P從點(diǎn)A向點(diǎn)B運(yùn)動(dòng)時(shí),點(diǎn)I移動(dòng)的路徑長(zhǎng)為_____.
【答案】
【解析】
連接OB,OA,過(guò)O作,得到,求得,連接IA,IB,根據(jù)角平分線(xiàn)的定義得到,,根據(jù)三角形的內(nèi)角和得到,設(shè)A,B,I三點(diǎn)所在的圓的圓心為,連接,,得到,根據(jù)等腰三角形的性質(zhì)得到,連接,解直角三角形得到,根據(jù)弧長(zhǎng)公式即可得到結(jié)論.
解:連接OB,OA,過(guò)O作,
,
,
在Rt中,,
,
,
,
連接IA,IB,
點(diǎn)I為的內(nèi)心,
,,
,
,
點(diǎn)P為弧AB上動(dòng)點(diǎn),
始終等于,
點(diǎn)I在以AB為弦,并且所對(duì)的圓周角為的一段劣弧上運(yùn)動(dòng),
設(shè)A,B,I三點(diǎn)所在的圓的圓心為,
連接,,
則,
,
,
連接,
,
,
,
點(diǎn)I移動(dòng)的路徑長(zhǎng)
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,線(xiàn)段EF在對(duì)角線(xiàn)AC上(E不與A重合,F不與C重合),EG⊥AD,FH⊥BC,垂足分別是G、H,且EG+FH=EF.
(1)寫(xiě)出圖中與△AEG相似的三角形;
(2)求線(xiàn)段EF的長(zhǎng);
(3)設(shè)EG=x,△AEG與△CFH的面積和為S,寫(xiě)出S關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍,并求出S的最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)在把一張正方形紙片按如圖方式剪去一個(gè)半徑為40厘米的圓面后得到如圖紙片,且該紙片所能剪出的最大圓形紙片剛好能與前面所剪的扇形紙片圍成一圓錐表面,則該正方形紙片的邊長(zhǎng)約為( 。├迕祝ú挥(jì)損耗、重疊,結(jié)果精確到1厘米,≈1.41,≈1.73)
A. 64 B. 67 C. 70 D. 73
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解放橋是天津市的標(biāo)志性建筑之一,是一座全鋼結(jié)構(gòu)的部分可開(kāi)啟的橋梁,
(I)如圖①,已知解放橋可開(kāi)啟部分的橋面的跨度AB等于47m,從AB的中點(diǎn)C處開(kāi)啟,則AC開(kāi)啟至A'C'的位置時(shí),A'C'的長(zhǎng)為 .
(II)如圖②,某校數(shù)學(xué)興趣小組要測(cè)量解放橋的全長(zhǎng)PQ,在觀景平臺(tái)M處測(cè)得∠PMQ=54°,沿河岸MQ前行,在觀景平臺(tái)N處測(cè)得∠PNQ=73°。已知PQ⊥MQ,MN=40m,求解放橋的全長(zhǎng)PQ(tan54°≈1.4,tan73°≈3.3,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:AD是正△ABC的高,O是AD上一點(diǎn),⊙O經(jīng)過(guò)點(diǎn)D,分別交AB、AC于E、F
(1)求∠EDF的度數(shù);
(2)若AD=6,求△AEF的周長(zhǎng);
(3)設(shè)EF、AD相較于N,若AE=3,EF=7,求DN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖 1,在△ABC 中,∠ACB=90°,BC=AC,點(diǎn) D 在 AB 上,DE⊥AB交 BC 于 E,點(diǎn) F 是 AE 的中點(diǎn)
(1) 寫(xiě)出線(xiàn)段 FD 與線(xiàn)段 FC 的關(guān)系并證明;
(2) 如圖 2,將△BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線(xiàn)段 FD 與線(xiàn)段 FC 的關(guān)系是否變化,寫(xiě)出你的結(jié)論并證明;
(3) 將△BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)一周,如果 BC=4,BE=2,直接寫(xiě)出線(xiàn)段 BF 的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線(xiàn)y=2x+t﹣3與函數(shù)y=的圖象有且只有兩個(gè)公共點(diǎn)時(shí),則t的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知、,B為y軸上的動(dòng)點(diǎn),以AB為邊構(gòu)造,使點(diǎn)C在x軸上,為BC的中點(diǎn),則PM的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,作等邊△ABC,取AC的中點(diǎn)D,以AD為邊向△ABC形外作等邊△ADE,取AE的中點(diǎn)G,再以EG為邊作等邊△EFG,如此反復(fù),當(dāng)作出第6個(gè)三角形時(shí),若AB=4,整個(gè)圖形的外圍周長(zhǎng)是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com