如圖,AC⊥CD,垂足為點C,BD⊥CD,垂足為點D,AB與CD交于點O.若AC=1,BD=2,CD=4,則AB=________.

5
分析:首先過點B作BE∥CD,交AC的延長線于點E,易證得四邊形BDCE是矩形,然后由勾股定理求得答案.
解答:解:過點B作BE∥CD,交AC的延長線于點E,
∵AC⊥CD,BD⊥CD,
∴AC∥BD,∠D=90°,
∴四邊形BDCE是平行四邊形,
∴平行四邊形BDCE是矩形,
∴CE=BD=2,BE=CD=4,∠E=90°,
∴AE=AC+CE=1+2=3,
∴在Rt△ABE中,AB==5.
故答案為:5.
點評:此題考查了矩形的判定與性質(zhì)以及勾股定理.此題難度不大,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

29、先閱讀理解兩條正確結(jié)論,并用這兩條結(jié)論完成應(yīng)用與探究.閱讀:
正確結(jié)論1.在圖甲△ABC中,如果D是AB的中點,DE∥BC交AC于點E,那么E也是AC的中點,及DE是中位線.
正確結(jié)論2.在圖乙梯形ABCD中,如果E為腰AB的中點且EF∥AD∥BC.那么F也是CD的中點,及EF是中位線.
應(yīng)用:如圖丙,已知,MN是平行四邊形ABCD外的一條直線,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′為垂足.求證:AA′+CC′=BB′+DD′.
探究:如圖丁,若直線MN向上移動,使點C在直線一側(cè),A、B、D三點在直線另一側(cè),則垂線段AA′、BB′、CC′、DD′之間存在什么關(guān)系?先對結(jié)論進行猜想,然后加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過C點的切線互相垂直,垂足為D.
(1)求證:AC平分∠DAB;
(2)過點O作線段AC的垂線OE,垂足為E(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(3)若CD=4,AC=4
5
,求垂線段OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南昌)如圖1,小紅家陽臺上放置了一個曬衣架.如圖2是曬衣架的側(cè)面示意圖,立桿AB、CD相交于點O,B、D兩點立于地面,經(jīng)測量:
AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,現(xiàn)將曬衣架完全穩(wěn)固張開,扣鏈EF成一條直線,且EF=32cm.
(1)求證:AC∥BD;
(2)求扣鏈EF與立桿AB的夾角∠OEF的度數(shù)(精確到0.1°);
(3)小紅的連衣裙穿在衣架后的總長度達到122cm,垂掛在曬衣架上是否會拖落到地面?請通過計算說明理由.
(參考數(shù)據(jù):sin61.9°≈0.882,cos61.9°≈0.471,
tan61.9°≈0.553;可使用科學(xué)記算器)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•道里區(qū)二模)如圖,在平面直角坐標(biāo)系內(nèi),點O為坐標(biāo)原點,直線y=
1
2
x+3交x軸于點A,交y軸于點B點C(4,O),過點C作AB的垂CD,點D為垂足,直線CD交y軸于點E,
(1)求點E的坐標(biāo).
(2)連接AE,動點P從點A出發(fā)以1個單位/秒的速度沿AC向終點C運動,過點P作PP1∥CE交AE于點P1,設(shè)點P(點P不與點A,C重合時)運動的時間為t秒,PP1的長為y,求y與t之間的函數(shù)關(guān)系式(直接寫出自變量t的取值范圍);
(3)在(2)的條件下,點Q為P1E中點,連接DQ,當(dāng)t為何值時有
PP1
DQ
=
2
5
?并求出此時同時經(jīng)過P、O、E三點的圓的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•大東區(qū)一模)如圖,C是以AB為直徑的⊙O上一點,AD和過點C的切線互相垂直,垂足為點D.過點O作線段AC的垂線段OE,垂足為點E,
(1)求證:AC平分∠BAD;
(2)若CD=4,AC=4
5
,求垂線段OE的長.

查看答案和解析>>

同步練習(xí)冊答案