文文和彬彬在證明“有兩個角相等的三角形是等腰三角形”這一命題時,畫出圖形,寫出已知,求證(如圖),已知:如圖,在△ABC中,∠B=∠C.求證:AB=AC.她們對各自所作的輔助線描述如下:
文文:“過點A作BC的中垂線AD”.
彬彬:“作△ABC的角平分線AD”
文文和彬彬的作法誰的正確?請你加以判斷,并選擇他們中間正確的作法完成證明過程.
答:________
證明:

彬彬的作法正確
分析:線段BC的中垂線可以直接作出的,不需要附帶“過點A作”作輔助線不能同時滿足兩個條件;根據(jù)已知條件利用AAS可證△ABD≌△ACD,得出AB=AC.
解答:彬彬的作法正確.
證明:作△ABC的角平分線AD
則∠BAD=∠CAD
在△BAD和△CAD中
∴△BAD≌△CAD(AAS)
∴AB=AC(全等三角形對應(yīng)邊相等).
點評:本題主要是考查了三角形全等的判定及等腰三角形的性質(zhì);題目為閱讀理解題,充分利用文字中的提示是解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

24、文文和彬彬在證明“有兩個角相等的三角形是等腰三角形”這一命題時,畫出圖形,寫出“已知”,“求證”(如圖),她們對各自所作的輔助線描述如下:
文文:“過點A作BC的中垂線AD,垂足為D”;
彬彬:“作△ABC的角平分線AD”.
數(shù)學老師看了兩位同學的輔助線作法后,說:“彬彬的作法是正確的,而文文的作法需要訂正.”
(1)請你簡要說明文文的輔助線作法錯在哪里;
(2)根據(jù)彬彬的輔助線作法,完成證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

文文和彬彬在證明“有兩個角相等的三角形是等腰三角形”這一命題時,畫出圖形,寫出已知,求證(如圖),已知:如圖,在△ABC中,∠B=∠C.求證:AB=AC.她們對各自所作的輔助線描述如下:精英家教網(wǎng)
文文:“過點A作BC的中垂線AD”.
彬彬:“作△ABC的角平分線AD”
文文和彬彬的作法誰的正確?請你加以判斷,并選擇他們中間正確的作法完成證明過程.
答:
 

證明:

查看答案和解析>>

科目:初中數(shù)學 來源:2008年初中畢業(yè)升學考試(浙江溫州卷)數(shù)學(帶解析) 題型:解答題

文文和彬彬在證明“有兩個角相等的三角形是等腰三角形”這一命題時,畫出圖形,寫出“已知”,“求證”(如圖),她們對各自所作的輔助線描述如下:
文文:“過點的中垂線,垂足為”;
彬彬:“作的角平分線”.

數(shù)學老師看了兩位同學的輔助線作法后,說:“彬彬的作法是正確的,而文文的作法需要訂正.”
(1)請你簡要說明文文的輔助線作法錯在哪里.
(2)根據(jù)彬彬的輔助線作法,完成證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年初中畢業(yè)升學考試(浙江溫州卷)數(shù)學(解析版) 題型:解答題

文文和彬彬在證明“有兩個角相等的三角形是等腰三角形”這一命題時,畫出圖形,寫出“已知”,“求證”(如圖),她們對各自所作的輔助線描述如下:

文文:“過點的中垂線,垂足為”;

彬彬:“作的角平分線”.

 

 

數(shù)學老師看了兩位同學的輔助線作法后,說:“彬彬的作法是正確的,而文文的作法需要訂正.”

(1)請你簡要說明文文的輔助線作法錯在哪里.

(2)根據(jù)彬彬的輔助線作法,完成證明過程.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省溫州市樂清市公立學校中考數(shù)學模擬試卷(解析版) 題型:解答題

(2008•溫州)文文和彬彬在證明“有兩個角相等的三角形是等腰三角形”這一命題時,畫出圖形,寫出“已知”,“求證”(如圖),她們對各自所作的輔助線描述如下:
文文:“過點A作BC的中垂線AD,垂足為D”;
彬彬:“作△ABC的角平分線AD”.
數(shù)學老師看了兩位同學的輔助線作法后,說:“彬彬的作法是正確的,而文文的作法需要訂正.”
(1)請你簡要說明文文的輔助線作法錯在哪里;
(2)根據(jù)彬彬的輔助線作法,完成證明過程.

查看答案和解析>>

同步練習冊答案