如圖,⊙O的半徑OC與直徑AB垂直,點(diǎn)P在OB上,CP的延長(zhǎng)線交⊙O于點(diǎn)D,在OB的延長(zhǎng)線上取點(diǎn)E,使ED=EP.
(1)求證:ED是⊙O的切線;
(2)當(dāng)OC=2,ED=2時(shí),求∠E的正切值tanE和圖中陰影部分的面積.
分析:(1)只要證明ED⊥OD,即可得到ED是圓的切線;
(2)根據(jù)陰影部分的面積S陰影=S△ODE-S扇形求解.
解答:(1)證明:連接OD,
∵OD是圓的半徑,
∴OD=OC.
∴∠CDO=∠DCO.
∵OC⊥AB,
∴∠COP=90°.
∵在Rt△OPC中,∠CPO+∠PCO=90°,
∵ED=EP,
∴∠EDP=∠EPD=∠CPO.
∴∠EDO=∠EDP+∠CDO=∠CPO+∠DCO=90°.
∴ED⊥OD,即ED是圓的切線.

(2)解:∵OD=OC=2,ED=2,
∴tan∠E=
OD
ED
=1.
∴∠E=45°,∠DOB=45°.
∴S陰影=S△ODE-S扇形=
1
2
×2×2-
45π×22
360
=2-
1
2
π(平方單位).
點(diǎn)評(píng):本題考查了等邊對(duì)等角,直角三角形的性質(zhì),等角的余角相等,正切的概念,直角三角形的面積公式,扇形的面積公式求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖,⊙O的半徑OC=5cm,直線l⊥OC,垂足為H,且l交⊙O于A、B兩點(diǎn),AB=8cm,則l沿OC所在直線向下平移與⊙O相切時(shí),移動(dòng)的距離應(yīng)等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,⊙O的半徑OC=5cm,直線l⊥OC,垂足為H,且l交⊙O于A、B兩點(diǎn),AB=8cm,若l要與⊙O相切,則要沿OC所在直線向下平移( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,⊙O的半徑OC垂直弦AB于點(diǎn)H,連接BC,過(guò)點(diǎn)A作弦AE∥BC,過(guò)點(diǎn)C作CD∥BA交精英家教網(wǎng)EA延長(zhǎng)線于點(diǎn)D,延長(zhǎng)CO交AE于點(diǎn)F.
(1)求證:CD為⊙O的切線;
(2)若BC=5,AB=8,求OF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O的半徑OC=10cm,直線l⊥CO,垂足為H,交⊙O于A、B兩點(diǎn),AB=16cm,則直線l平移
4或16
4或16
厘米時(shí)能與⊙O相切.

查看答案和解析>>

同步練習(xí)冊(cè)答案